本月累计签到次数:

今天获取 积分

热处理

热处理

1 回答

热处理对不锈钢性能有影响吗?

材料类 其中之一 2017-05-15 18:40 回复了问题 • 5 人关注 来自相关话题

568 浏览

化学镀镍与电镀镍的镀层分析比较

其它类 某年某月 2017-03-07 10:04 发表了文章 来自相关话题

镀层成分的不同: 
化学镀镍层的主要成份为P1%—14%+Ni86%—99%;密度为7.9-8.5g/cm3。电镀镍层的主要成份为99%以上的镍,镀层密度8.9g/cm3。

镀层均匀程度的不同: 
化学镀镍因只靠自身的催化性能而还原沉积,只要保证化学镀浴的PH值,温度等相对均匀就可得到仿形性极佳的镀层;电镀是通直流 查看全部
镀层成分的不同: 
化学镀镍层的主要成份为P1%—14%+Ni86%—99%;密度为7.9-8.5g/cm3。电镀镍层的主要成份为99%以上的镍,镀层密度8.9g/cm3。

镀层均匀程度的不同: 
化学镀镍因只靠自身的催化性能而还原沉积,只要保证化学镀浴的PH值,温度等相对均匀就可得到仿形性极佳的镀层;电镀是通直流
369 浏览

化学镀镍的常见故障及解决办法

机械自动化类 快来取快递 2017-03-06 09:43 发表了文章 来自相关话题

化学镀镍的常见故障及解决办法

化学镀镍的常见故障及解决办法:
(1)沉速低
镀液pH值过低:测pH值调整,并控制pH在下限值。虽然pH值较高能提高沉速,但会影响镀液稳定性。
镀液温度过低:要求温度达到规范时下槽进行施镀。新开缸第一批工件下槽时,温度应达到上限,反应开始后,正常施镀时,温度在下限为好。
溶液主成分浓度 查看全部
化学镀镍的常见故障及解决办法

化学镀镍的常见故障及解决办法:
(1)沉速低
镀液pH值过低:测pH值调整,并控制pH在下限值。虽然pH值较高能提高沉速,但会影响镀液稳定性。
镀液温度过低:要求温度达到规范时下槽进行施镀。新开缸第一批工件下槽时,温度应达到上限,反应开始后,正常施镀时,温度在下限为好。
溶液主成分浓度
4 回答
5 回答

零件也看脸?电镀,发黑,喷砂,哪个更经济更实用?

智能制造类 无敌金刚 2016-11-30 16:15 回复了问题 • 7 人关注 来自相关话题

438 浏览

机械质量的灵魂——热处理

智能制造类 星旭自动化 2016-11-15 23:05 发表了文章 来自相关话题

小编今天根据网络资料整理了一些基础的热处理的知识,稍有机械知识的人应该知道,热处理是赋予机械内在质量的灵魂,我国的机械加工并不差,但是热处理水平还尚待提升,燃烧吧,机械人当自强!


金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织, 查看全部
小编今天根据网络资料整理了一些基础的热处理的知识,稍有机械知识的人应该知道,热处理是赋予机械内在质量的灵魂,我国的机械加工并不差,但是热处理水平还尚待提升,燃烧吧,机械人当自强!


金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,
542 浏览

机械质量的灵魂——热处理

智能制造类 Leader 2016-11-04 09:56 发表了文章 来自相关话题

小编今天根据网络资料整理了一些基础的热处理的知识,稍有机械知识的人应该知道,热处理是赋予机械内在质量的灵魂,我国的机械加工并不差,但是热处理水平还尚待提升,燃烧吧,机械人当自强!

金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或 查看全部
小编今天根据网络资料整理了一些基础的热处理的知识,稍有机械知识的人应该知道,热处理是赋予机械内在质量的灵魂,我国的机械加工并不差,但是热处理水平还尚待提升,燃烧吧,机械人当自强!

金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或
511 浏览

热处理工艺

电气控制类 传用轴 2016-11-03 11:49 发表了文章 来自相关话题

以调质态40Cr为研究对象,通过一系列压缩试验,分析了不同调质态、不同 压下量下的压缩变形后试样硬度的分布及变化规律。采用有限元模拟获得了相应的 压缩变形后的等效应变分布规律,并构建了室温条件下等效应变与维氏硬度关系。结 果表明:预测值与实测值比较吻合,最大误差仅为1.88 。 
 链接:http://pan.bai 查看全部
以调质态40Cr为研究对象,通过一系列压缩试验,分析了不同调质态、不同 压下量下的压缩变形后试样硬度的分布及变化规律。采用有限元模拟获得了相应的 压缩变形后的等效应变分布规律,并构建了室温条件下等效应变与维氏硬度关系。结 果表明:预测值与实测值比较吻合,最大误差仅为1.88 。 
 链接:http://pan.bai
482 浏览

正火、退火、淬火、回火你都分清楚了吗!

智能制造类 晨光中的金玫瑰 2016-11-01 10:00 发表了文章 来自相关话题

退火与回火的区别在于:(简单地说,退火就是不要硬度,回火还保留一定硬度)。
回火:
高温回火所得组织为回火索氏体。回火一般不单独使用,在零件淬火处理后进行回火,主要目的是消除淬火应力,得到要求的组织,回火根据回火温度的不同分为低温、中温和高温回火。分别得到回火马氏体、屈氏体和索氏体。其中淬火后进行高温回火相结合的热处 查看全部
退火与回火的区别在于:(简单地说,退火就是不要硬度,回火还保留一定硬度)。
回火:
高温回火所得组织为回火索氏体。回火一般不单独使用,在零件淬火处理后进行回火,主要目的是消除淬火应力,得到要求的组织,回火根据回火温度的不同分为低温、中温和高温回火。分别得到回火马氏体、屈氏体和索氏体。其中淬火后进行高温回火相结合的热处
5 回答
条新动态, 点击查看
电镀是指在含有欲镀金属的盐类溶液中﹐以被镀基体金属为阴极﹐通过电解作用﹐使镀液中欲镀金属的阳离子在基体金属表面沉积出来﹐形成镀层的一种表面加工方法。镀层性能不同于基体金属﹐具有新的特征。根据镀层的功能分为防护性镀层﹐装饰性镀层及其它功能性镀层。
电镀是指在含有欲镀金属的盐类溶液中﹐以被镀基体金属为阴极﹐通过电解作用﹐使镀液中欲镀金属的阳离子在基体金属表面沉积出来﹐形成镀层的一种表面加工方法。镀层性能不同于基体金属﹐具有新的特征。根据镀层的功能分为防护性镀层﹐装饰性镀层及其它功能性镀层。
等温正火工艺。正火的加热温度一般为Ac3+80~150℃,奥氏体晶粒较大(增加脆性),正火冷却需采用两段冷却或控制冷却的等温正火工艺,使F+P的转变在很小的温度范围内或同一温度下进行。
等温正火工艺。正火的加热温度一般为Ac3+80~150℃,奥氏体晶粒较大(增加脆性),正火冷却需采用两段冷却或控制冷却的等温正火工艺,使F+P的转变在很小的温度范围内或同一温度下进行。
1 回答

热处理对不锈钢性能有影响吗?

材料类 其中之一 2017-05-15 18:40 回复了问题 • 5 人关注 来自相关话题

4 回答
5 回答

零件也看脸?电镀,发黑,喷砂,哪个更经济更实用?

智能制造类 无敌金刚 2016-11-30 16:15 回复了问题 • 7 人关注 来自相关话题

5 回答
1 回答

热处理的价格怎么算呢?

设计类 kk2016 2016-05-16 09:40 回复了问题 • 2 人关注 来自相关话题

568 浏览

化学镀镍与电镀镍的镀层分析比较

其它类 某年某月 2017-03-07 10:04 发表了文章 来自相关话题

镀层成分的不同: 
化学镀镍层的主要成份为P1%—14%+Ni86%—99%;密度为7.9-8.5g/cm3。电镀镍层的主要成份为99%以上的镍,镀层密度8.9g/cm3。

镀层均匀程度的不同: 
化学镀镍因只靠自身的催化性能而还原沉积,只要保证化学镀浴的PH值,温度等相对均匀就可得到仿形性极佳的镀层;电镀是通直流电的还原沉积,因此不可避免地受到电力分布的影响,存在尖端放电效应而造成镀层的非均匀性。 

深镀能力: 
电镀因受到电力线分布的限制及工件金属对外电源的屏蔽作用而限制了电镀的深镀能力;化学镀因仅靠自身的催化氧化还原反应而沉积得到的镀层,因此只要保证镀液能够与工件表面良好润湿及生成气体能够及时排出,镀层可无限制地在工件表面仿形复制。 

耐腐蚀性能: 
化学镀镍因拥有较低的孔隙率及镀层表面的易钝化性而使得化学镀层拥有较高的耐腐蚀性能。同时化学镀镍层的耐候性也明显优于电镀镍层。 

硬度: 
化学镀镍层在一定温度下,其组织金相可以从迷散的Ni—P状态转变为Ni3p晶相状态而拥有较高的硬度,电镀镍层的热处理前后硬度几乎没有变化。 

钎焊性能: 
化学镀镍层特别是低磷化学镀镍层拥有良好的钎焊性能,但电镀镍层就没有这一性能。 

成本:
化学镀镍由于生产率较低,药液价格较高等因素,成本远远高于电镀镍。 查看全部
镀层成分的不同: 
化学镀镍层的主要成份为P1%—14%+Ni86%—99%;密度为7.9-8.5g/cm3。电镀镍层的主要成份为99%以上的镍,镀层密度8.9g/cm3。

镀层均匀程度的不同: 
化学镀镍因只靠自身的催化性能而还原沉积,只要保证化学镀浴的PH值,温度等相对均匀就可得到仿形性极佳的镀层;电镀是通直流电的还原沉积,因此不可避免地受到电力分布的影响,存在尖端放电效应而造成镀层的非均匀性。 

深镀能力: 
电镀因受到电力线分布的限制及工件金属对外电源的屏蔽作用而限制了电镀的深镀能力;化学镀因仅靠自身的催化氧化还原反应而沉积得到的镀层,因此只要保证镀液能够与工件表面良好润湿及生成气体能够及时排出,镀层可无限制地在工件表面仿形复制。 

耐腐蚀性能: 
化学镀镍因拥有较低的孔隙率及镀层表面的易钝化性而使得化学镀层拥有较高的耐腐蚀性能。同时化学镀镍层的耐候性也明显优于电镀镍层。 

硬度: 
化学镀镍层在一定温度下,其组织金相可以从迷散的Ni—P状态转变为Ni3p晶相状态而拥有较高的硬度,电镀镍层的热处理前后硬度几乎没有变化。 

钎焊性能: 
化学镀镍层特别是低磷化学镀镍层拥有良好的钎焊性能,但电镀镍层就没有这一性能。 

成本:
化学镀镍由于生产率较低,药液价格较高等因素,成本远远高于电镀镍。
369 浏览

化学镀镍的常见故障及解决办法

机械自动化类 快来取快递 2017-03-06 09:43 发表了文章 来自相关话题

化学镀镍的常见故障及解决办法

化学镀镍的常见故障及解决办法:
(1)沉速低
镀液pH值过低:测pH值调整,并控制pH在下限值。虽然pH值较高能提高沉速,但会影响镀液稳定性。
镀液温度过低:要求温度达到规范时下槽进行施镀。新开缸第一批工件下槽时,温度应达到上限,反应开始后,正常施镀时,温度在下限为好。
溶液主成分浓度低:分析调整,如还原剂不足时,添加还原补充液;镍离子浓度偏低时,添加镍盐补充液。对于上规模的化学镀镍,设自动分析、补给装置是必要的,可以延长连续工作时间(由30h延至56h)和镍循环周期(由6周延至11周)。
 亚磷酸根过多:弃掉部分镀液。
装载量太低:增加受镀面积至1dm2/L。
 稳定剂浓度偏重:倾倒部分,少量多次加浓缩液。
(2)镀液分解(镀液呈翻腾状,出现镍粉)
温度过高或局部过热:搅拌下加入温去离子水。
次亚磷酸钠大多:冲稀补加其它成分。
镀液的pH值过高:调整pH值至规范值。
机械杂质:过滤除去。
装载量过高:降至1dm2/L
槽壁或设备上有沉淀物:滤出镀液,退镀清洗(用3HNO3溶液)。
操作温度下补加液料大多:搅拌下少量多次添加。
稳定剂带出损失:添加少量稳定剂。
催化物质带入镀液:加强镀前清洗。
镀层剥离碎片:过滤镀液。
(3)镀层结合力差或起泡
镀前处理不良:提高工作表面的质量,加工完成后应清除工件上所有的焊接飞溅物和焊渣。工件表面的粗糙度应达到与精饰要求相当的粗糙义,如碳钢工件表面粗糙度Ra<1.75μm时,很难获得有良好附着力的镀层;对于严重锈蚀的非加工表面,可用角向磨光机打磨,最好采用喷砂或喷丸处理;工件镀前适当的活化处理可以提高镀层的附着力。如合金钢、钛合金可用含氟化物的盐酸活化后,与碳钢件混装施镀;高级合金钢和铅基合金预镀化学镍;碳钢活化时注意脱碳。
 温度波动太大:控制温度在较小的范围波动。
下槽温度太低:适当提高下槽温度。
 清洗不良:改进清洗工序。
 金属离子污染:用大面积废件镀而除去。
 有机杂质污染:活化炭1-2g/L 处理。
 热处理不当:调整热处理时间和温度。
(4)镀层粗糙
 镀液浓度过高:适当冲稀镀液。
 镀液的pH值过高:降低pH值至规范值。
 机械杂质:过滤除去。
亚磷酸盐过高:弃掉部分镀液。
加药方法不对:不可直接加固体药品或用镀液溶解药品。
清洗不够 ,带入污染:加强清洗。
 络合剂浓度偏低:补充络合剂。
工艺用水污染:使用去离子水或蒸馏水。
(5)镀层不完整(漏镀)
前处理不当、镀件局部钝化或油污、清洗水不干净等:加强前处理,更换清洗水。
装挂不对有气袋:改进装挂方法、抖动工件、变换位置等。
十二烷基硫酸钠污染:活性炭吸附。
金属离子污染:除去(见上述),过滤。
底金属影响:镀前闪镀镍。
稳定剂过量:弃去部分镀液。
(6)镀层针孔(通常镀层厚度达10μm以上是无孔)
工件前处理不当和酸洗后停留时间过长:提高工件表面加工质量,酸洗后应在30s内进入镀液。
pH值过高:降低pH值。
镀液组份变质和老化:报废镀液。
悬浮不溶物:过滤除去。
装载量过大:减至1dm2/ L,降低pH值。
金属离子污染:除去。对于含pb、cd、Zn、Sn等元素的基材,在施镀镍前,最好电镀1~5μm的镍打底,以阻止有害元素进入镀液。
搅拌不充分:摆动工作。
有机杂质污染:活性炭处理。
(7)镀液不沉积镍
稳定剂浓度过高:弃去部分镀镍。
表面未活化:改进镀前处理工艺。
表面非催化:镀前表面催化处理
镀液pH值、温度过低:调整之。
金属离子污染:加1~2g/L活性炭过滤,通电处理。
(8)pH值变化快
前处理溶液带入:改进清洗工序。
装载量太大:减少受镀面积。
pH值出范围:调pH至最佳范围。
(9)镍离子消耗过快
槽壁和设备镀上镍:处理方法同(2)--⑥
载量太大:减少装载量。
液分解:滤去镀液分析调整或报废。
补充硫酸镍不及时:补加主盐。
(10)镀层光亮度下降、发黑或不均匀
镀液过度浓缩(水份蒸发超过30):补水
镀液老化(使用寿命达6周期):报废旧液。
络合剂用错或络合剂、稳定剂变质:无法恢复镀液性能时只能将镀液报废。
施镀条件不当,如pH值或温度过高,溶液搅拌和工件阴极移动不良等:调低pH值至规定值的下限,当镀液寿命超过2周期时,pH值控制在4.2为好。但pH=3.5---4.0之间也能得到光亮的镀层;良好的镀液搅拌系统工程和工件移动以及低温施镀都有利于提高镀层光亮度。并控制镀液流速<0.3m/s避免造成漏镀。
有机杂质污染:处理方法同(3)---⑥。
前处理不充分:加强前处理。
(11)镀层有麻点
工件表面光洁度较低:尽量提高工件的表面质量。
在施镀时调整pH值:施镀时不调pH值。
镀液不稳定和镀液中悬浮颗粒较多:加强过滤,补充一定的稳定剂。
工件摆放位置不当:工件较重要的表面朝下或竖直成90o,并将工件预热到70oC以上施镀,可改善工件向上的光洁度。
(12)镀层厚度不均匀(可以看到镀液中气泡的析出量较正常情况下要多)
由于工件几何形状影响工件表面上的氢气逸出不易,有妨碍氢气顺利排出的部位可能造成镀层较薄:最好采用滚镀法。对于较大的工件也应尽可能性在施镀过程中移动、镀液搅拌、降温等,以利于氢气的排出,提高镀层厚度的均匀性。
工件材质不同:不同材料的化学镀镍速度是不同的,所以不同材质的工件一起施镀时,必须分别测量不同材质工件的镀层厚度。
(13)镀层表面化有大量"花斑",局部有暗色条纹或斑块状沉积物(用10倍放大镜观察)
前处理清洗不良,工件表面粘附了某些杂质:更换洗净剂,镀层恢复了均匀的光亮表面。
(14)镀液中毒(工件上的析氢量较正常情况下多,且沉积速度很慢)
稳定剂过量:通电处理。(工件作阴极,不锈钢件阳极,Dk=0.6~1.0A/dm2电解1~5min;将镀液置于80oC保温24h;如镀液还不行,最好将镀液储存起来,分批与新镀液混合使用。
缓蚀剂污染镀液:酸洗液中缓蚀剂的加入要慎重,要防止微量缓蚀剂带入镀槽中。
(15)镀槽不沉积镀层
镀液中产生一些固体颗粒:将镀液打入备用槽,再用30(wt)HNO3在40OC下清洗(不能冷洗),钝化镀槽5h,然后用水洗净硝酸,再用干净棉纱擦洗镀槽上附着物。用清水清洗干净。
镀槽的防镀效果不好:为了防止镀槽上沉积镀层,必须采取相应的防镀方法。据称,采用阳极保护法时,以工件作为阴极和参比电极效果好。在75~85OC的镀液中维持不锈钢镀槽相对施镀的工件的参比电位为+350~550mv时,镀槽有良好的钝化性能。此时的阳极电流密度为20~90mA/m2。当机械杂质进入镀槽或镀槽上有镀层产生时,其维钝电流将有所上升,但很快将下降至正常水平。这样防镀效果好,并且可以提高镀速10~20,而且对镀层质量无显著影响。
加热管功率与其表面积之比不当:同样功率的加热管,应作得尽量长一些,管子粗一些,缩小加热管,应作得尽量长一些,管子粗一些,缩小加热管功率与其表面积之比。
施镀设备及挂具用硝酸清洗不够:每次开缸前用硝酸浸泡镀槽、加热管、挂具、滚筒等,即使没有发现镍镀层也应这样做。
(16)镀液混浊
主盐、还原剂浓度超过上限:调整溶液。
络合剂浓度低:补充络合剂。
pH值过高:降低镀液pH值。 
(17)槽液不环保,不能通过SGS认证测试,污染环境,废液处理成本高
    使用环保的化学镀镍液,如环保化学镀镍光亮剂、环保化学镀镍稳定剂等,这样不但增加产品的质量和稳定性,而且镀液环保,废液易处理排放,成本底。 查看全部
化学镀镍的常见故障及解决办法

化学镀镍的常见故障及解决办法:
(1)沉速低
镀液pH值过低:测pH值调整,并控制pH在下限值。虽然pH值较高能提高沉速,但会影响镀液稳定性。
镀液温度过低:要求温度达到规范时下槽进行施镀。新开缸第一批工件下槽时,温度应达到上限,反应开始后,正常施镀时,温度在下限为好。
溶液主成分浓度低:分析调整,如还原剂不足时,添加还原补充液;镍离子浓度偏低时,添加镍盐补充液。对于上规模的化学镀镍,设自动分析、补给装置是必要的,可以延长连续工作时间(由30h延至56h)和镍循环周期(由6周延至11周)。
 亚磷酸根过多:弃掉部分镀液。
装载量太低:增加受镀面积至1dm2/L。
 稳定剂浓度偏重:倾倒部分,少量多次加浓缩液。
(2)镀液分解(镀液呈翻腾状,出现镍粉)
温度过高或局部过热:搅拌下加入温去离子水。
次亚磷酸钠大多:冲稀补加其它成分。
镀液的pH值过高:调整pH值至规范值。
机械杂质:过滤除去。
装载量过高:降至1dm2/L
槽壁或设备上有沉淀物:滤出镀液,退镀清洗(用3HNO3溶液)。
操作温度下补加液料大多:搅拌下少量多次添加。
稳定剂带出损失:添加少量稳定剂。
催化物质带入镀液:加强镀前清洗。
镀层剥离碎片:过滤镀液。
(3)镀层结合力差或起泡
镀前处理不良:提高工作表面的质量,加工完成后应清除工件上所有的焊接飞溅物和焊渣。工件表面的粗糙度应达到与精饰要求相当的粗糙义,如碳钢工件表面粗糙度Ra<1.75μm时,很难获得有良好附着力的镀层;对于严重锈蚀的非加工表面,可用角向磨光机打磨,最好采用喷砂或喷丸处理;工件镀前适当的活化处理可以提高镀层的附着力。如合金钢、钛合金可用含氟化物的盐酸活化后,与碳钢件混装施镀;高级合金钢和铅基合金预镀化学镍;碳钢活化时注意脱碳。
 温度波动太大:控制温度在较小的范围波动。
下槽温度太低:适当提高下槽温度。
 清洗不良:改进清洗工序。
 金属离子污染:用大面积废件镀而除去。
 有机杂质污染:活化炭1-2g/L 处理。
 热处理不当:调整热处理时间和温度。
(4)镀层粗糙
 镀液浓度过高:适当冲稀镀液。
 镀液的pH值过高:降低pH值至规范值。
 机械杂质:过滤除去。
亚磷酸盐过高:弃掉部分镀液。
加药方法不对:不可直接加固体药品或用镀液溶解药品。
清洗不够 ,带入污染:加强清洗。
 络合剂浓度偏低:补充络合剂。
工艺用水污染:使用去离子水或蒸馏水。
(5)镀层不完整(漏镀)
前处理不当、镀件局部钝化或油污、清洗水不干净等:加强前处理,更换清洗水。
装挂不对有气袋:改进装挂方法、抖动工件、变换位置等。
十二烷基硫酸钠污染:活性炭吸附。
金属离子污染:除去(见上述),过滤。
底金属影响:镀前闪镀镍。
稳定剂过量:弃去部分镀液。
(6)镀层针孔(通常镀层厚度达10μm以上是无孔)
工件前处理不当和酸洗后停留时间过长:提高工件表面加工质量,酸洗后应在30s内进入镀液。
pH值过高:降低pH值。
镀液组份变质和老化:报废镀液。
悬浮不溶物:过滤除去。
装载量过大:减至1dm2/ L,降低pH值。
金属离子污染:除去。对于含pb、cd、Zn、Sn等元素的基材,在施镀镍前,最好电镀1~5μm的镍打底,以阻止有害元素进入镀液。
搅拌不充分:摆动工作。
有机杂质污染:活性炭处理。
(7)镀液不沉积镍
稳定剂浓度过高:弃去部分镀镍。
表面未活化:改进镀前处理工艺。
表面非催化:镀前表面催化处理
镀液pH值、温度过低:调整之。
金属离子污染:加1~2g/L活性炭过滤,通电处理。
(8)pH值变化快
前处理溶液带入:改进清洗工序。
装载量太大:减少受镀面积。
pH值出范围:调pH至最佳范围。
(9)镍离子消耗过快
槽壁和设备镀上镍:处理方法同(2)--⑥
载量太大:减少装载量。
液分解:滤去镀液分析调整或报废。
补充硫酸镍不及时:补加主盐。
(10)镀层光亮度下降、发黑或不均匀
镀液过度浓缩(水份蒸发超过30):补水
镀液老化(使用寿命达6周期):报废旧液。
络合剂用错或络合剂、稳定剂变质:无法恢复镀液性能时只能将镀液报废。
施镀条件不当,如pH值或温度过高,溶液搅拌和工件阴极移动不良等:调低pH值至规定值的下限,当镀液寿命超过2周期时,pH值控制在4.2为好。但pH=3.5---4.0之间也能得到光亮的镀层;良好的镀液搅拌系统工程和工件移动以及低温施镀都有利于提高镀层光亮度。并控制镀液流速<0.3m/s避免造成漏镀。
有机杂质污染:处理方法同(3)---⑥。
前处理不充分:加强前处理。
(11)镀层有麻点
工件表面光洁度较低:尽量提高工件的表面质量。
在施镀时调整pH值:施镀时不调pH值。
镀液不稳定和镀液中悬浮颗粒较多:加强过滤,补充一定的稳定剂。
工件摆放位置不当:工件较重要的表面朝下或竖直成90o,并将工件预热到70oC以上施镀,可改善工件向上的光洁度。
(12)镀层厚度不均匀(可以看到镀液中气泡的析出量较正常情况下要多)
由于工件几何形状影响工件表面上的氢气逸出不易,有妨碍氢气顺利排出的部位可能造成镀层较薄:最好采用滚镀法。对于较大的工件也应尽可能性在施镀过程中移动、镀液搅拌、降温等,以利于氢气的排出,提高镀层厚度的均匀性。
工件材质不同:不同材料的化学镀镍速度是不同的,所以不同材质的工件一起施镀时,必须分别测量不同材质工件的镀层厚度。
(13)镀层表面化有大量"花斑",局部有暗色条纹或斑块状沉积物(用10倍放大镜观察)
前处理清洗不良,工件表面粘附了某些杂质:更换洗净剂,镀层恢复了均匀的光亮表面。
(14)镀液中毒(工件上的析氢量较正常情况下多,且沉积速度很慢)
稳定剂过量:通电处理。(工件作阴极,不锈钢件阳极,Dk=0.6~1.0A/dm2电解1~5min;将镀液置于80oC保温24h;如镀液还不行,最好将镀液储存起来,分批与新镀液混合使用。
缓蚀剂污染镀液:酸洗液中缓蚀剂的加入要慎重,要防止微量缓蚀剂带入镀槽中。
(15)镀槽不沉积镀层
镀液中产生一些固体颗粒:将镀液打入备用槽,再用30(wt)HNO3在40OC下清洗(不能冷洗),钝化镀槽5h,然后用水洗净硝酸,再用干净棉纱擦洗镀槽上附着物。用清水清洗干净。
镀槽的防镀效果不好:为了防止镀槽上沉积镀层,必须采取相应的防镀方法。据称,采用阳极保护法时,以工件作为阴极和参比电极效果好。在75~85OC的镀液中维持不锈钢镀槽相对施镀的工件的参比电位为+350~550mv时,镀槽有良好的钝化性能。此时的阳极电流密度为20~90mA/m2。当机械杂质进入镀槽或镀槽上有镀层产生时,其维钝电流将有所上升,但很快将下降至正常水平。这样防镀效果好,并且可以提高镀速10~20,而且对镀层质量无显著影响。
加热管功率与其表面积之比不当:同样功率的加热管,应作得尽量长一些,管子粗一些,缩小加热管,应作得尽量长一些,管子粗一些,缩小加热管功率与其表面积之比。
施镀设备及挂具用硝酸清洗不够:每次开缸前用硝酸浸泡镀槽、加热管、挂具、滚筒等,即使没有发现镍镀层也应这样做。
(16)镀液混浊
主盐、还原剂浓度超过上限:调整溶液。
络合剂浓度低:补充络合剂。
pH值过高:降低镀液pH值。 
(17)槽液不环保,不能通过SGS认证测试,污染环境,废液处理成本高
    使用环保的化学镀镍液,如环保化学镀镍光亮剂、环保化学镀镍稳定剂等,这样不但增加产品的质量和稳定性,而且镀液环保,废液易处理排放,成本底。
438 浏览

机械质量的灵魂——热处理

智能制造类 星旭自动化 2016-11-15 23:05 发表了文章 来自相关话题

小编今天根据网络资料整理了一些基础的热处理的知识,稍有机械知识的人应该知道,热处理是赋予机械内在质量的灵魂,我国的机械加工并不差,但是热处理水平还尚待提升,燃烧吧,机械人当自强!


金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。


热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。这些过程互相衔接,不可间断。金属热处理工艺大体可分为整体热处理、表面热处理、局部热处理和化学热处理等。


一、整体热处理


整体热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的金属热处理工艺。钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。


1、退火:

是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。


2、正火:

是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善低碳材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。


3、淬火:

是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但同时变脆。


4、回火:

为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一适当温度进行长时间的保温,再进行冷却。


“四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺 。为了获得一定的强度和韧性,把淬火和高温回火结合起来的工艺,称为调质。某些合金淬火形成过饱和固溶体后,将其置于室温或稍高的适当温度下保持较长时间,以提高合金的硬度、强度或电性磁性等。这样的热处理工艺称为时效处理。


把压力加工形变与热处理有效而紧密地结合起来进行,使工件获得很好的强度、韧性配合的方法称为形变热处理;在负压气氛或真空中进行的热处理称为真空热处理,它不仅能使工件不氧化,不脱碳,保持处理后工件表面光洁,提高工件的性能,还可以通入渗剂进行化学热处理。


二、表面热处理


只加热工件表层,以改变其表层力学性能的金属热处理工艺。为了只加热工件表层而不使过多的热量传入工件内部,使用的热源须具有高的能量密度,即在单位面积的工件上给予较大的热能,使工件表层或局部能短时或瞬时达到高温。表面热处理的主要方法有火焰淬火和感应加热热处理,常用的热源有氧乙炔或氧丙烷等火焰、感应电流、激光和电子束等。


三、化学热处理


通过改变工件表层化学成分、组织和性能的金属热处理工艺。化学热处理与表面热处理不同之处是后者改变了工件表层的化学成分。化学热处理是将工件放在含碳、氮或其它合金元素的介质(气体、液体、固体)中加热,保温较长时间,从而使工件表层渗入碳、氮、硼和铬等元素。渗入元素后,有时还要进行其它热处理工艺如淬火及回火。化学热处理的主要方法有渗碳、渗氮、渗金属。


热处理是机械零件和工模具制造过程中的重要工序之一。它可以控制工件的各种性能 ,如耐磨、耐腐蚀、磁性能等。还可以改善毛坯的组织和应力状态,以利于进行各种冷、热加工。例如白口铸铁经过长时间退火处理可以获得可锻铸铁,提高塑性;齿轮采用正确的热处理工艺,使用寿命可以比不经热处理的齿轮成倍或几十倍地提高;另外,价廉的碳钢通过渗入某些合金元素就具有某些价昂的合金钢性能,可以代替某些耐热钢、不锈钢;工模具则几乎全部需要经过热处理方可使用。


四、退火和回火的区别


退火与回火的区别在于:(简单地说,退火就是不要硬度,回火还保留一定硬度)。


1、回火:

高温回火所得组织为回火索氏体。回火一般不单独使用,在零件淬火处理后进行回火,主要目的是消除淬火应力,得到要求的组织,回火根据回火温度的不同分为低温、中温和高温回火。分别得到回火马氏体、屈氏体和索氏体。其中淬火后进行高温回火相结合的热处理称为调质处理,其目的是获得强度,硬度和塑性,韧性都较好的综合机械性能。因此,广泛用于汽车,拖拉机,机床等的重要结构零件,如连杆,螺栓,齿轮及轴类。回火后硬度一般为HB200-330。


2、退火:

退火过程中发生得是珠光体转变,退火的主要目的是使金属内部组织达到或接近平衡状态,为后续加工和最终热处理做准备。去应力退火是为了消除由于塑性形变加工、焊接等而造成的以及铸件内存在的残余应力而进行的退火工艺。锻造、铸造、焊接以及切削加工后的工件内部存在内应力,如不及时消除,将使工件在加工和使用过程中发生变形,影响工件精度。采用去应力退火消除加工过程中产生的内应力十分重要。去应力退火的加热温度低于相变温度,因此,在整个热处理过程中不发生组织转变。内应力主要是通过工件在保温和缓冷过程中自然消除的。为了使工件内应力消除得更彻底,在加热时应控制加热温度。一般是低温进炉,然后以100℃/h左右得加热速度加热到规定温度。焊接件得加热温度应略高于600℃。保温时间视情况而定,通常为2~4h。铸件去应力退火的保温时间取上限,冷却速度控制在(20~50)℃/h,冷至300℃以下才能出炉空冷。时效处理可分为自然时效和人工时效两种自然时效是将铸件置于露天场地半年以上,便其缓缓地发生,从而使残余应力消除或减少,人工时效是将铸件加热到550~650℃进行去应力退火,它比自然时效节省时间,残余应力去除较为彻底。


3、什么叫回火?

回火是将淬火后的金属成材或零件加热到某一温度,保温一定时间后,以一定方式冷却的热处理工艺,回火是淬火后紧接着进行的一种操作,通常也是工件进行热处理的最后一道工序,因而把淬火和回火的联合工艺称为最终热处理。淬火与回火的主要目的是:


1)减少内应力和降低脆性,淬火件存在着很大的应力和脆性,如没有及时回火往往会产生变形甚至开裂。

2)调整工件的机械性能,工件淬火后,硬度高,脆性大,为了满足各种工件不同的性能要求,可以通过回火来调整,硬度,强度,塑性和韧性。

3)稳定工件尺寸。通过回火可使金相组织趋于稳定,以保证在以后的使用过程中不再发生变形。

4)改善某些合金钢的切削性能。


在生产中,常根据对工件性能的要求。按加热温度的不同,把回火分为低温回火,中温回火,和高温回火。淬火和随后的高温回火相结合的热处理工艺称为调质,即在具有高度强度的同时,又有好的塑性韧性。主要用于处理随较大载荷的机器结构零件,如机床主轴,汽车后桥半轴,强力齿轮等。


4、什么叫淬火?

淬火是把金属成材或零件加热到相变温度以上,保温后,以大于临界冷却速度的急剧冷却,以获得马氏体组织的热处理工艺。淬火是为了得到马氏体组织,再经回火后,使工件获得良好的使用性能,以充分发挥材料的潜力。其主要目的是:


1)提高金属成材或零件的机械性能。例如:提高工具、轴承等的硬度和耐磨性,提高弹簧的弹性极限,提高轴类零件的综合机械性能等。

2)改善某些特殊钢的材料性能或化学性能。如提高不锈钢的耐蚀性,增加磁钢的永磁性等。


淬火冷却时,除需合理选用淬火介质外,还要有正确的淬火方法,常用的淬火方法,主要有单液淬火,双液淬火,分级淬火、等温淬火,局部淬火等。


五、“四把火”的区别与联系


正火有以下目的和用途

1、对亚共析钢,正火用以消除铸、锻、焊件的过热粗晶组织和魏氏组织,轧材中的带状组织;细化晶粒;并可作为淬火前的预先热处理。


2、对过共析钢,正火可以消除网状二次渗碳体,并使珠光体细化,不但改善机械性能,而且有利于以后的球化退火。



3、对低碳深冲薄钢板,正火可以消除晶界的游离渗碳体,以改善其深冲性能。


4、对低碳钢和低碳低合金钢,采用正火,可得到较多的细片状珠光体组织,使硬度增高到HB140-190,避免切削时的“粘刀”现象,改善切削加工性。对中碳钢,在既可用正火又可用退火的场合下,用正火更为经济和方便。


5、对普通中碳结构钢,在力学性能要求不高的场合下,可用正火代替淬火加高温回火,不仅操作简便,而且使钢材的组织和尺寸稳定。


6、高温正火(Ac3以上150~200℃)由于高温下扩散速度较高,可以减少铸件和锻件的成分偏析。高温正火后的粗大晶粒可通过随后第二次较低温度的正火予以细化。


7、对某些用于汽轮机和锅炉的低、中碳合金钢,常采用正火以获得贝氏体组织,再经高温回火,用于400~550℃时具有良好的抗蠕变能力。


8、除钢件和钢材以外,正火还广泛用于球墨铸铁热处理,使其获得珠光体基体,提高球墨铸铁的强度。


由于正火的特点是空气冷却,因而环境气温、堆放方式、气流及工件尺寸对正火后的组织和性能均有影响。正火组织还可作为合金钢的一种分类方法。通常根据直径为25毫米的试样加热到900℃后,空冷得到的组织,将合金钢分为珠光体钢、贝氏体钢、马氏体钢和奥氏体钢。


退火是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却的一种金属热处理工艺。退火热处理分为完全退火,不完全退火和去应力退火。退火材料的力学性能可以用拉伸试验来检测,也可以用硬度试验来检测。许多钢材都是以退火热处理状态供货的,钢材硬度检测可以采用洛氏硬度计,测试HRB硬度,对于较薄的钢板、钢带以及薄壁钢管,可以采用表面洛氏硬度计,检测HRT硬度。


退火的目的在于:

1、改善或消除钢铁在铸造、锻压、轧制和焊接过程中所造成的各种组织缺陷以及残余应力,防止工件变形、开裂。

2、软化工件以便进行切削加工。

3、细化晶粒,改善组织以提高工件的机械性能。

4、为最终热处理(淬火、回火)作好组织准备。


常用的退火工艺有:

1、完全退火

用以细化中、低碳钢经铸造、锻压和焊接后出现的力学性能不佳的粗大过热组织。将工件加热到铁素体全部转变为奥氏体的温度以上30~50℃,保温一段时间,然后随炉缓慢冷却,在冷却过程中奥氏体再次发生转变,即可使钢的组织变细。


2、球化退火

用以降低工具钢和轴承钢锻压后的偏高硬度。将工件加热到钢开始形成奥氏体的温度以上20~40℃,保温后缓慢冷却,在冷却过程中珠光体中的片层状渗碳体变为球状,从而降低了硬度。


3、等温退火

用以降低某些镍、铬含量较高的合金结构钢的高硬度,以进行切削加工。一般先以较快速度冷却到奥氏体最不稳定的温度,保温适当时间,奥氏体转变为托氏体或索氏体,硬度即可降 低。


4、再结晶退火

用以消除金属线材、薄板在冷拔、冷轧过程中的硬化现象(硬度升高、塑性下降)。加热温度一般为钢开始形成奥氏体的温度以下50~150℃ ,只有这样才能消除加工硬化效应使金属软化。


5、石墨化退火

用以使含有大量渗碳体的铸铁变成塑性良好的可锻铸铁。工艺操作是将铸件加热到950℃左右,保温一定时间后适当冷却,使渗碳体分解形成团絮状石墨。


6、扩散退火

用以使合金铸件化学成分均匀化,提高其使用性能。方法是在不发生熔化的前提下,将铸件加热到尽可能高的温度,并长时间保温,待合金中各种元素扩散趋于均匀分布后缓冷。


7、去应力退火

用以消除钢铁铸件和焊接件的内应力。对于钢铁制品加热后开始形成奥氏体的温度以下100~200℃,保温后在空气中冷却,即可消除内应力。


淬火,金属和玻璃的一种热处理工艺。把合金制品或玻璃加热到一定温度,随即在水、油或空气中急速冷却,一般用以提高合金的硬度和强度。通称“蘸火”。将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理。


钢铁工件在淬火后具有以下特点:

1、得到了马氏体、贝氏体、残余奥氏体等不平衡(即不稳定)组织。

2、存在较大内应力。

3、力学性能不能满足要求。因此,钢铁工件淬火后一般都要经过回火。


回火的作用在于:

1、提高组织稳定性,使工件在使用过程中不再发生组织转变,从而使工件几何尺寸和性能保持稳定。

2、消除内应力,以便改善工件的使用性能并稳定工件几何尺寸。

3、调整钢铁的力学性能以满足使用要求。


回火之所以具有这些作用,是因为温度升高时,原子活动能力增强,钢铁中的铁、碳和其他合金元素的原子可以较快地进行扩散,实现原子的重新排列组合,从而使不稳定的不平衡组织逐步转变为稳定的平衡组织。内应力的消除还与温度升高时金属强度降低有关。一般钢铁回火时,硬度和强度下降,塑性提高。回火温度越高,这些力学性能的变化越大。有些合金元素含量较高的合金钢,在某一温度范围回火时,会析出一些颗粒细小的金属化合物,使强度和硬度上升。这种现象称为二次硬化。


回火要求:

用途不同的工件应在不同温度下回火,以满足使用中的要求。

1、刀具、轴承、渗碳淬火零件、表面淬火零件通常在250℃以下进行低温回火。低温回火后硬度变化不大,内应力减小,韧性稍有提高。

2、弹簧在350~500℃下中温回火,可获得较高的弹性和必要的韧性。

3、中碳结构钢制作的零件通常在500~600℃进行高温回火,以获得适宜的强度与韧性的良好配合。


淬火加高温回火的热处理工艺总称为调质。


钢在300℃左右回火时,常使其脆性增大,这种现象称为第一类回火脆性。一般不应在这个温度区间回火。某些中碳合金结构钢在高温回火后,如果缓慢冷至室温,也易于变脆。这种现象称为第二类回火脆性。在钢中加入钼,或回火时在油或水中冷却,都可以防止第二类回火脆性。将第二类回火脆性的钢重新加热至原来的回火温度,便可以消除这种脆性。


六、钢的退火


概念:将钢加热、保温后缓慢冷却,以获得接近平衡组织的工艺过程。


1、完全退火

工艺:加热Ac3以上30-50℃→保温→随炉冷到500度以下→空冷室温。

目的:细化晶粒,均匀组织 ,提高塑韧性,消除内应力,便于机械加工。


2、等温退火

工艺:加热Ac3以上→保温→快冷至珠光体转变温度→等温停留→转变为P→出炉空冷;

目的:同上。但时间短,易控制,脱氧、脱碳小。(适用于过冷A比较稳定的合金钢及大型碳钢件)。


3、球化退火

概念:是使钢中的渗碳体球化的工艺过程。

对象:共析钢和过共析钢


工艺:

(1)等温球化退火加热Ac1以上20-30度→保温→迅速冷却到Ar1以下20度→等温→随炉冷至600度左右→出炉空冷。

(2)普通球化退火加热Ac1以上20-30度→保温→极缓慢冷却至600度左右→出炉空冷。(周期长,效率低,不适用)。

目的:降低硬度、提高塑韧性,便于切削加工。

机理:使片状或网状渗碳体变成颗粒状(球状)

说明:退火加热时,组织没有完全A化,所以又称不完全退火。


4、去应力退火

工艺:加热到Ac1以下某一温度(500-650度)→保温→缓冷至室温。

目的:消除铸件、锻件、焊接件等的残余内应力,稳定工件尺寸。


七、钢的回火


工艺:将淬火后的钢重新加热到A1以下某一温度保温,然后冷却(一般空冷)至室温。

目的:消除淬火产生的内应力,稳定工件尺寸,降低脆性,改善切削加工性能。

力学性能:随着回火温度的升高,硬度、强度下降,塑性韧性升高。


1、低温回火

150-250℃ ,M回,减少内应力和脆性,提高塑韧性,有较高的硬度和耐磨性。用于制作量具、刀具和滚动轴承等。


2、中温回火

350-500℃ ,T回,具有较高的弹性,有一定的塑性和硬度。用于制作弹簧、锻模等。


3、高温回火

500-650℃ ,S回,具有良好的综合力学性能。用于制作齿轮、曲轴等。
 
 
 
来源:1号机器人

智造家提供 查看全部
小编今天根据网络资料整理了一些基础的热处理的知识,稍有机械知识的人应该知道,热处理是赋予机械内在质量的灵魂,我国的机械加工并不差,但是热处理水平还尚待提升,燃烧吧,机械人当自强!


金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。


热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。这些过程互相衔接,不可间断。金属热处理工艺大体可分为整体热处理、表面热处理、局部热处理和化学热处理等。


一、整体热处理


整体热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的金属热处理工艺。钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。


1、退火:

是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。


2、正火:

是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善低碳材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。


3、淬火:

是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但同时变脆。


4、回火:

为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一适当温度进行长时间的保温,再进行冷却。


“四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺 。为了获得一定的强度和韧性,把淬火和高温回火结合起来的工艺,称为调质。某些合金淬火形成过饱和固溶体后,将其置于室温或稍高的适当温度下保持较长时间,以提高合金的硬度、强度或电性磁性等。这样的热处理工艺称为时效处理。


把压力加工形变与热处理有效而紧密地结合起来进行,使工件获得很好的强度、韧性配合的方法称为形变热处理;在负压气氛或真空中进行的热处理称为真空热处理,它不仅能使工件不氧化,不脱碳,保持处理后工件表面光洁,提高工件的性能,还可以通入渗剂进行化学热处理。


二、表面热处理


只加热工件表层,以改变其表层力学性能的金属热处理工艺。为了只加热工件表层而不使过多的热量传入工件内部,使用的热源须具有高的能量密度,即在单位面积的工件上给予较大的热能,使工件表层或局部能短时或瞬时达到高温。表面热处理的主要方法有火焰淬火和感应加热热处理,常用的热源有氧乙炔或氧丙烷等火焰、感应电流、激光和电子束等。


三、化学热处理


通过改变工件表层化学成分、组织和性能的金属热处理工艺。化学热处理与表面热处理不同之处是后者改变了工件表层的化学成分。化学热处理是将工件放在含碳、氮或其它合金元素的介质(气体、液体、固体)中加热,保温较长时间,从而使工件表层渗入碳、氮、硼和铬等元素。渗入元素后,有时还要进行其它热处理工艺如淬火及回火。化学热处理的主要方法有渗碳、渗氮、渗金属。


热处理是机械零件和工模具制造过程中的重要工序之一。它可以控制工件的各种性能 ,如耐磨、耐腐蚀、磁性能等。还可以改善毛坯的组织和应力状态,以利于进行各种冷、热加工。例如白口铸铁经过长时间退火处理可以获得可锻铸铁,提高塑性;齿轮采用正确的热处理工艺,使用寿命可以比不经热处理的齿轮成倍或几十倍地提高;另外,价廉的碳钢通过渗入某些合金元素就具有某些价昂的合金钢性能,可以代替某些耐热钢、不锈钢;工模具则几乎全部需要经过热处理方可使用。


四、退火和回火的区别


退火与回火的区别在于:(简单地说,退火就是不要硬度,回火还保留一定硬度)。


1、回火:

高温回火所得组织为回火索氏体。回火一般不单独使用,在零件淬火处理后进行回火,主要目的是消除淬火应力,得到要求的组织,回火根据回火温度的不同分为低温、中温和高温回火。分别得到回火马氏体、屈氏体和索氏体。其中淬火后进行高温回火相结合的热处理称为调质处理,其目的是获得强度,硬度和塑性,韧性都较好的综合机械性能。因此,广泛用于汽车,拖拉机,机床等的重要结构零件,如连杆,螺栓,齿轮及轴类。回火后硬度一般为HB200-330。


2、退火:

退火过程中发生得是珠光体转变,退火的主要目的是使金属内部组织达到或接近平衡状态,为后续加工和最终热处理做准备。去应力退火是为了消除由于塑性形变加工、焊接等而造成的以及铸件内存在的残余应力而进行的退火工艺。锻造、铸造、焊接以及切削加工后的工件内部存在内应力,如不及时消除,将使工件在加工和使用过程中发生变形,影响工件精度。采用去应力退火消除加工过程中产生的内应力十分重要。去应力退火的加热温度低于相变温度,因此,在整个热处理过程中不发生组织转变。内应力主要是通过工件在保温和缓冷过程中自然消除的。为了使工件内应力消除得更彻底,在加热时应控制加热温度。一般是低温进炉,然后以100℃/h左右得加热速度加热到规定温度。焊接件得加热温度应略高于600℃。保温时间视情况而定,通常为2~4h。铸件去应力退火的保温时间取上限,冷却速度控制在(20~50)℃/h,冷至300℃以下才能出炉空冷。时效处理可分为自然时效和人工时效两种自然时效是将铸件置于露天场地半年以上,便其缓缓地发生,从而使残余应力消除或减少,人工时效是将铸件加热到550~650℃进行去应力退火,它比自然时效节省时间,残余应力去除较为彻底。


3、什么叫回火?

回火是将淬火后的金属成材或零件加热到某一温度,保温一定时间后,以一定方式冷却的热处理工艺,回火是淬火后紧接着进行的一种操作,通常也是工件进行热处理的最后一道工序,因而把淬火和回火的联合工艺称为最终热处理。淬火与回火的主要目的是:


1)减少内应力和降低脆性,淬火件存在着很大的应力和脆性,如没有及时回火往往会产生变形甚至开裂。

2)调整工件的机械性能,工件淬火后,硬度高,脆性大,为了满足各种工件不同的性能要求,可以通过回火来调整,硬度,强度,塑性和韧性。

3)稳定工件尺寸。通过回火可使金相组织趋于稳定,以保证在以后的使用过程中不再发生变形。

4)改善某些合金钢的切削性能。


在生产中,常根据对工件性能的要求。按加热温度的不同,把回火分为低温回火,中温回火,和高温回火。淬火和随后的高温回火相结合的热处理工艺称为调质,即在具有高度强度的同时,又有好的塑性韧性。主要用于处理随较大载荷的机器结构零件,如机床主轴,汽车后桥半轴,强力齿轮等。


4、什么叫淬火?

淬火是把金属成材或零件加热到相变温度以上,保温后,以大于临界冷却速度的急剧冷却,以获得马氏体组织的热处理工艺。淬火是为了得到马氏体组织,再经回火后,使工件获得良好的使用性能,以充分发挥材料的潜力。其主要目的是:


1)提高金属成材或零件的机械性能。例如:提高工具、轴承等的硬度和耐磨性,提高弹簧的弹性极限,提高轴类零件的综合机械性能等。

2)改善某些特殊钢的材料性能或化学性能。如提高不锈钢的耐蚀性,增加磁钢的永磁性等。


淬火冷却时,除需合理选用淬火介质外,还要有正确的淬火方法,常用的淬火方法,主要有单液淬火,双液淬火,分级淬火、等温淬火,局部淬火等。


五、“四把火”的区别与联系


正火有以下目的和用途

1、对亚共析钢,正火用以消除铸、锻、焊件的过热粗晶组织和魏氏组织,轧材中的带状组织;细化晶粒;并可作为淬火前的预先热处理。


2、对过共析钢,正火可以消除网状二次渗碳体,并使珠光体细化,不但改善机械性能,而且有利于以后的球化退火。



3、对低碳深冲薄钢板,正火可以消除晶界的游离渗碳体,以改善其深冲性能。


4、对低碳钢和低碳低合金钢,采用正火,可得到较多的细片状珠光体组织,使硬度增高到HB140-190,避免切削时的“粘刀”现象,改善切削加工性。对中碳钢,在既可用正火又可用退火的场合下,用正火更为经济和方便。


5、对普通中碳结构钢,在力学性能要求不高的场合下,可用正火代替淬火加高温回火,不仅操作简便,而且使钢材的组织和尺寸稳定。


6、高温正火(Ac3以上150~200℃)由于高温下扩散速度较高,可以减少铸件和锻件的成分偏析。高温正火后的粗大晶粒可通过随后第二次较低温度的正火予以细化。


7、对某些用于汽轮机和锅炉的低、中碳合金钢,常采用正火以获得贝氏体组织,再经高温回火,用于400~550℃时具有良好的抗蠕变能力。


8、除钢件和钢材以外,正火还广泛用于球墨铸铁热处理,使其获得珠光体基体,提高球墨铸铁的强度。


由于正火的特点是空气冷却,因而环境气温、堆放方式、气流及工件尺寸对正火后的组织和性能均有影响。正火组织还可作为合金钢的一种分类方法。通常根据直径为25毫米的试样加热到900℃后,空冷得到的组织,将合金钢分为珠光体钢、贝氏体钢、马氏体钢和奥氏体钢。


退火是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却的一种金属热处理工艺。退火热处理分为完全退火,不完全退火和去应力退火。退火材料的力学性能可以用拉伸试验来检测,也可以用硬度试验来检测。许多钢材都是以退火热处理状态供货的,钢材硬度检测可以采用洛氏硬度计,测试HRB硬度,对于较薄的钢板、钢带以及薄壁钢管,可以采用表面洛氏硬度计,检测HRT硬度。


退火的目的在于:

1、改善或消除钢铁在铸造、锻压、轧制和焊接过程中所造成的各种组织缺陷以及残余应力,防止工件变形、开裂。

2、软化工件以便进行切削加工。

3、细化晶粒,改善组织以提高工件的机械性能。

4、为最终热处理(淬火、回火)作好组织准备。


常用的退火工艺有:

1、完全退火

用以细化中、低碳钢经铸造、锻压和焊接后出现的力学性能不佳的粗大过热组织。将工件加热到铁素体全部转变为奥氏体的温度以上30~50℃,保温一段时间,然后随炉缓慢冷却,在冷却过程中奥氏体再次发生转变,即可使钢的组织变细。


2、球化退火

用以降低工具钢和轴承钢锻压后的偏高硬度。将工件加热到钢开始形成奥氏体的温度以上20~40℃,保温后缓慢冷却,在冷却过程中珠光体中的片层状渗碳体变为球状,从而降低了硬度。


3、等温退火

用以降低某些镍、铬含量较高的合金结构钢的高硬度,以进行切削加工。一般先以较快速度冷却到奥氏体最不稳定的温度,保温适当时间,奥氏体转变为托氏体或索氏体,硬度即可降 低。


4、再结晶退火

用以消除金属线材、薄板在冷拔、冷轧过程中的硬化现象(硬度升高、塑性下降)。加热温度一般为钢开始形成奥氏体的温度以下50~150℃ ,只有这样才能消除加工硬化效应使金属软化。


5、石墨化退火

用以使含有大量渗碳体的铸铁变成塑性良好的可锻铸铁。工艺操作是将铸件加热到950℃左右,保温一定时间后适当冷却,使渗碳体分解形成团絮状石墨。


6、扩散退火

用以使合金铸件化学成分均匀化,提高其使用性能。方法是在不发生熔化的前提下,将铸件加热到尽可能高的温度,并长时间保温,待合金中各种元素扩散趋于均匀分布后缓冷。


7、去应力退火

用以消除钢铁铸件和焊接件的内应力。对于钢铁制品加热后开始形成奥氏体的温度以下100~200℃,保温后在空气中冷却,即可消除内应力。


淬火,金属和玻璃的一种热处理工艺。把合金制品或玻璃加热到一定温度,随即在水、油或空气中急速冷却,一般用以提高合金的硬度和强度。通称“蘸火”。将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理。


钢铁工件在淬火后具有以下特点:

1、得到了马氏体、贝氏体、残余奥氏体等不平衡(即不稳定)组织。

2、存在较大内应力。

3、力学性能不能满足要求。因此,钢铁工件淬火后一般都要经过回火。


回火的作用在于:

1、提高组织稳定性,使工件在使用过程中不再发生组织转变,从而使工件几何尺寸和性能保持稳定。

2、消除内应力,以便改善工件的使用性能并稳定工件几何尺寸。

3、调整钢铁的力学性能以满足使用要求。


回火之所以具有这些作用,是因为温度升高时,原子活动能力增强,钢铁中的铁、碳和其他合金元素的原子可以较快地进行扩散,实现原子的重新排列组合,从而使不稳定的不平衡组织逐步转变为稳定的平衡组织。内应力的消除还与温度升高时金属强度降低有关。一般钢铁回火时,硬度和强度下降,塑性提高。回火温度越高,这些力学性能的变化越大。有些合金元素含量较高的合金钢,在某一温度范围回火时,会析出一些颗粒细小的金属化合物,使强度和硬度上升。这种现象称为二次硬化。


回火要求:

用途不同的工件应在不同温度下回火,以满足使用中的要求。

1、刀具、轴承、渗碳淬火零件、表面淬火零件通常在250℃以下进行低温回火。低温回火后硬度变化不大,内应力减小,韧性稍有提高。

2、弹簧在350~500℃下中温回火,可获得较高的弹性和必要的韧性。

3、中碳结构钢制作的零件通常在500~600℃进行高温回火,以获得适宜的强度与韧性的良好配合。


淬火加高温回火的热处理工艺总称为调质。


钢在300℃左右回火时,常使其脆性增大,这种现象称为第一类回火脆性。一般不应在这个温度区间回火。某些中碳合金结构钢在高温回火后,如果缓慢冷至室温,也易于变脆。这种现象称为第二类回火脆性。在钢中加入钼,或回火时在油或水中冷却,都可以防止第二类回火脆性。将第二类回火脆性的钢重新加热至原来的回火温度,便可以消除这种脆性。


六、钢的退火


概念:将钢加热、保温后缓慢冷却,以获得接近平衡组织的工艺过程。


1、完全退火

工艺:加热Ac3以上30-50℃→保温→随炉冷到500度以下→空冷室温。

目的:细化晶粒,均匀组织 ,提高塑韧性,消除内应力,便于机械加工。


2、等温退火

工艺:加热Ac3以上→保温→快冷至珠光体转变温度→等温停留→转变为P→出炉空冷;

目的:同上。但时间短,易控制,脱氧、脱碳小。(适用于过冷A比较稳定的合金钢及大型碳钢件)。


3、球化退火

概念:是使钢中的渗碳体球化的工艺过程。

对象:共析钢和过共析钢


工艺:

(1)等温球化退火加热Ac1以上20-30度→保温→迅速冷却到Ar1以下20度→等温→随炉冷至600度左右→出炉空冷。

(2)普通球化退火加热Ac1以上20-30度→保温→极缓慢冷却至600度左右→出炉空冷。(周期长,效率低,不适用)。

目的:降低硬度、提高塑韧性,便于切削加工。

机理:使片状或网状渗碳体变成颗粒状(球状)

说明:退火加热时,组织没有完全A化,所以又称不完全退火。


4、去应力退火

工艺:加热到Ac1以下某一温度(500-650度)→保温→缓冷至室温。

目的:消除铸件、锻件、焊接件等的残余内应力,稳定工件尺寸。


七、钢的回火


工艺:将淬火后的钢重新加热到A1以下某一温度保温,然后冷却(一般空冷)至室温。

目的:消除淬火产生的内应力,稳定工件尺寸,降低脆性,改善切削加工性能。

力学性能:随着回火温度的升高,硬度、强度下降,塑性韧性升高。


1、低温回火

150-250℃ ,M回,减少内应力和脆性,提高塑韧性,有较高的硬度和耐磨性。用于制作量具、刀具和滚动轴承等。


2、中温回火

350-500℃ ,T回,具有较高的弹性,有一定的塑性和硬度。用于制作弹簧、锻模等。


3、高温回火

500-650℃ ,S回,具有良好的综合力学性能。用于制作齿轮、曲轴等。
 
 
 
来源:1号机器人

智造家提供
542 浏览

机械质量的灵魂——热处理

智能制造类 Leader 2016-11-04 09:56 发表了文章 来自相关话题

小编今天根据网络资料整理了一些基础的热处理的知识,稍有机械知识的人应该知道,热处理是赋予机械内在质量的灵魂,我国的机械加工并不差,但是热处理水平还尚待提升,燃烧吧,机械人当自强!

金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。

热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。这些过程互相衔接,不可间断。金属热处理工艺大体可分为整体热处理、表面热处理、局部热处理和化学热处理等。

一、整体热处理

整体热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的金属热处理工艺。钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。

1、退火:

是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。

2、正火:

是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善低碳材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。

3、淬火:

是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但同时变脆。

4、回火:

为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一适当温度进行长时间的保温,再进行冷却。

“四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺 。为了获得一定的强度和韧性,把淬火和高温回火结合起来的工艺,称为调质。某些合金淬火形成过饱和固溶体后,将其置于室温或稍高的适当温度下保持较长时间,以提高合金的硬度、强度或电性磁性等。这样的热处理工艺称为时效处理。

把压力加工形变与热处理有效而紧密地结合起来进行,使工件获得很好的强度、韧性配合的方法称为形变热处理;在负压气氛或真空中进行的热处理称为真空热处理,它不仅能使工件不氧化,不脱碳,保持处理后工件表面光洁,提高工件的性能,还可以通入渗剂进行化学热处理。

二、表面热处理

只加热工件表层,以改变其表层力学性能的金属热处理工艺。为了只加热工件表层而不使过多的热量传入工件内部,使用的热源须具有高的能量密度,即在单位面积的工件上给予较大的热能,使工件表层或局部能短时或瞬时达到高温。表面热处理的主要方法有火焰淬火和感应加热热处理,常用的热源有氧乙炔或氧丙烷等火焰、感应电流、激光和电子束等。

三、化学热处理

通过改变工件表层化学成分、组织和性能的金属热处理工艺。化学热处理与表面热处理不同之处是后者改变了工件表层的化学成分。化学热处理是将工件放在含碳、氮或其它合金元素的介质(气体、液体、固体)中加热,保温较长时间,从而使工件表层渗入碳、氮、硼和铬等元素。渗入元素后,有时还要进行其它热处理工艺如淬火及回火。化学热处理的主要方法有渗碳、渗氮、渗金属。

热处理是机械零件和工模具制造过程中的重要工序之一。它可以控制工件的各种性能 ,如耐磨、耐腐蚀、磁性能等。还可以改善毛坯的组织和应力状态,以利于进行各种冷、热加工。例如白口铸铁经过长时间退火处理可以获得可锻铸铁,提高塑性;齿轮采用正确的热处理工艺,使用寿命可以比不经热处理的齿轮成倍或几十倍地提高;另外,价廉的碳钢通过渗入某些合金元素就具有某些价昂的合金钢性能,可以代替某些耐热钢、不锈钢;工模具则几乎全部需要经过热处理方可使用。

四、退火和回火的区别

退火与回火的区别在于:(简单地说,退火就是不要硬度,回火还保留一定硬度)。

1、回火:

高温回火所得组织为回火索氏体。回火一般不单独使用,在零件淬火处理后进行回火,主要目的是消除淬火应力,得到要求的组织,回火根据回火温度的不同分为低温、中温和高温回火。分别得到回火马氏体、屈氏体和索氏体。其中淬火后进行高温回火相结合的热处理称为调质处理,其目的是获得强度,硬度和塑性,韧性都较好的综合机械性能。因此,广泛用于汽车,拖拉机,机床等的重要结构零件,如连杆,螺栓,齿轮及轴类。回火后硬度一般为HB200-330。

2、退火:

退火过程中发生得是珠光体转变,退火的主要目的是使金属内部组织达到或接近平衡状态,为后续加工和最终热处理做准备。去应力退火是为了消除由于塑性形变加工、焊接等而造成的以及铸件内存在的残余应力而进行的退火工艺。锻造、铸造、焊接以及切削加工后的工件内部存在内应力,如不及时消除,将使工件在加工和使用过程中发生变形,影响工件精度。采用去应力退火消除加工过程中产生的内应力十分重要。去应力退火的加热温度低于相变温度,因此,在整个热处理过程中不发生组织转变。内应力主要是通过工件在保温和缓冷过程中自然消除的。为了使工件内应力消除得更彻底,在加热时应控制加热温度。一般是低温进炉,然后以100℃/h左右得加热速度加热到规定温度。焊接件得加热温度应略高于600℃。保温时间视情况而定,通常为2~4h。铸件去应力退火的保温时间取上限,冷却速度控制在(20~50)℃/h,冷至300℃以下才能出炉空冷。时效处理可分为自然时效和人工时效两种自然时效是将铸件置于露天场地半年以上,便其缓缓地发生,从而使残余应力消除或减少,人工时效是将铸件加热到550~650℃进行去应力退火,它比自然时效节省时间,残余应力去除较为彻底。

3、什么叫回火?

回火是将淬火后的金属成材或零件加热到某一温度,保温一定时间后,以一定方式冷却的热处理工艺,回火是淬火后紧接着进行的一种操作,通常也是工件进行热处理的最后一道工序,因而把淬火和回火的联合工艺称为最终热处理。淬火与回火的主要目的是:

1)减少内应力和降低脆性,淬火件存在着很大的应力和脆性,如没有及时回火往往会产生变形甚至开裂。

2)调整工件的机械性能,工件淬火后,硬度高,脆性大,为了满足各种工件不同的性能要求,可以通过回火来调整,硬度,强度,塑性和韧性。

3)稳定工件尺寸。通过回火可使金相组织趋于稳定,以保证在以后的使用过程中不再发生变形。

4)改善某些合金钢的切削性能。

在生产中,常根据对工件性能的要求。按加热温度的不同,把回火分为低温回火,中温回火,和高温回火。淬火和随后的高温回火相结合的热处理工艺称为调质,即在具有高度强度的同时,又有好的塑性韧性。主要用于处理随较大载荷的机器结构零件,如机床主轴,汽车后桥半轴,强力齿轮等。

4、什么叫淬火?

淬火是把金属成材或零件加热到相变温度以上,保温后,以大于临界冷却速度的急剧冷却,以获得马氏体组织的热处理工艺。淬火是为了得到马氏体组织,再经回火后,使工件获得良好的使用性能,以充分发挥材料的潜力。其主要目的是:

1)提高金属成材或零件的机械性能。例如:提高工具、轴承等的硬度和耐磨性,提高弹簧的弹性极限,提高轴类零件的综合机械性能等。

2)改善某些特殊钢的材料性能或化学性能。如提高不锈钢的耐蚀性,增加磁钢的永磁性等。

淬火冷却时,除需合理选用淬火介质外,还要有正确的淬火方法,常用的淬火方法,主要有单液淬火,双液淬火,分级淬火、等温淬火,局部淬火等。

五、“四把火”的区别与联系

正火有以下目的和用途

1、对亚共析钢,正火用以消除铸、锻、焊件的过热粗晶组织和魏氏组织,轧材中的带状组织;细化晶粒;并可作为淬火前的预先热处理。

2、对过共析钢,正火可以消除网状二次渗碳体,并使珠光体细化,不但改善机械性能,而且有利于以后的球化退火。

3、对低碳深冲薄钢板,正火可以消除晶界的游离渗碳体,以改善其深冲性能。

4、对低碳钢和低碳低合金钢,采用正火,可得到较多的细片状珠光体组织,使硬度增高到HB140-190,避免切削时的“粘刀”现象,改善切削加工性。对中碳钢,在既可用正火又可用退火的场合下,用正火更为经济和方便。

5、对普通中碳结构钢,在力学性能要求不高的场合下,可用正火代替淬火加高温回火,不仅操作简便,而且使钢材的组织和尺寸稳定。

6、高温正火(Ac3以上150~200℃)由于高温下扩散速度较高,可以减少铸件和锻件的成分偏析。高温正火后的粗大晶粒可通过随后第二次较低温度的正火予以细化。

7、对某些用于汽轮机和锅炉的低、中碳合金钢,常采用正火以获得贝氏体组织,再经高温回火,用于400~550℃时具有良好的抗蠕变能力。

8、除钢件和钢材以外,正火还广泛用于球墨铸铁热处理,使其获得珠光体基体,提高球墨铸铁的强度。

由于正火的特点是空气冷却,因而环境气温、堆放方式、气流及工件尺寸对正火后的组织和性能均有影响。正火组织还可作为合金钢的一种分类方法。通常根据直径为25毫米的试样加热到900℃后,空冷得到的组织,将合金钢分为珠光体钢、贝氏体钢、马氏体钢和奥氏体钢。

退火是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却的一种金属热处理工艺。退火热处理分为完全退火,不完全退火和去应力退火。退火材料的力学性能可以用拉伸试验来检测,也可以用硬度试验来检测。许多钢材都是以退火热处理状态供货的,钢材硬度检测可以采用洛氏硬度计,测试HRB硬度,对于较薄的钢板、钢带以及薄壁钢管,可以采用表面洛氏硬度计,检测HRT硬度。

退火的目的在于:

1、改善或消除钢铁在铸造、锻压、轧制和焊接过程中所造成的各种组织缺陷以及残余应力,防止工件变形、开裂。

2、软化工件以便进行切削加工。


3、细化晶粒,改善组织以提高工件的机械性能。


4、为最终热处理(淬火、回火)作好组织准备。

常用的退火工艺有:

1、完全退火

用以细化中、低碳钢经铸造、锻压和焊接后出现的力学性能不佳的粗大过热组织。将工件加热到铁素体全部转变为奥氏体的温度以上30~50℃,保温一段时间,然后随炉缓慢冷却,在冷却过程中奥氏体再次发生转变,即可使钢的组织变细。

2、球化退火

用以降低工具钢和轴承钢锻压后的偏高硬度。将工件加热到钢开始形成奥氏体的温度以上20~40℃,保温后缓慢冷却,在冷却过程中珠光体中的片层状渗碳体变为球状,从而降低了硬度。

3、等温退火

用以降低某些镍、铬含量较高的合金结构钢的高硬度,以进行切削加工。一般先以较快速度冷却到奥氏体最不稳定的温度,保温适当时间,奥氏体转变为托氏体或索氏体,硬度即可降 低。

4、再结晶退火

用以消除金属线材、薄板在冷拔、冷轧过程中的硬化现象(硬度升高、塑性下降)。加热温度一般为钢开始形成奥氏体的温度以下50~150℃ ,只有这样才能消除加工硬化效应使金属软化。

5、石墨化退火

用以使含有大量渗碳体的铸铁变成塑性良好的可锻铸铁。工艺操作是将铸件加热到950℃左右,保温一定时间后适当冷却,使渗碳体分解形成团絮状石墨。

6、扩散退火

用以使合金铸件化学成分均匀化,提高其使用性能。方法是在不发生熔化的前提下,将铸件加热到尽可能高的温度,并长时间保温,待合金中各种元素扩散趋于均匀分布后缓冷。

7、去应力退火

用以消除钢铁铸件和焊接件的内应力。对于钢铁制品加热后开始形成奥氏体的温度以下100~200℃,保温后在空气中冷却,即可消除内应力。

淬火,金属和玻璃的一种热处理工艺。把合金制品或玻璃加热到一定温度,随即在水、油或空气中急速冷却,一般用以提高合金的硬度和强度。通称“蘸火”。将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理。

钢铁工件在淬火后具有以下特点:

1、得到了马氏体、贝氏体、残余奥氏体等不平衡(即不稳定)组织。

2、存在较大内应力。

3、力学性能不能满足要求。因此,钢铁工件淬火后一般都要经过回火。

回火的作用在于:

1、提高组织稳定性,使工件在使用过程中不再发生组织转变,从而使工件几何尺寸和性能保持稳定。

2、消除内应力,以便改善工件的使用性能并稳定工件几何尺寸。

3、调整钢铁的力学性能以满足使用要求。

回火之所以具有这些作用,是因为温度升高时,原子活动能力增强,钢铁中的铁、碳和其他合金元素的原子可以较快地进行扩散,实现原子的重新排列组合,从而使不稳定的不平衡组织逐步转变为稳定的平衡组织。内应力的消除还与温度升高时金属强度降低有关。一般钢铁回火时,硬度和强度下降,塑性提高。回火温度越高,这些力学性能的变化越大。有些合金元素含量较高的合金钢,在某一温度范围回火时,会析出一些颗粒细小的金属化合物,使强度和硬度上升。这种现象称为二次硬化。

回火要求:

用途不同的工件应在不同温度下回火,以满足使用中的要求。

1、刀具、轴承、渗碳淬火零件、表面淬火零件通常在250℃以下进行低温回火。低温回火后硬度变化不大,内应力减小,韧性稍有提高。

2、弹簧在350~500℃下中温回火,可获得较高的弹性和必要的韧性。

3、中碳结构钢制作的零件通常在500~600℃进行高温回火,以获得适宜的强度与韧性的良好配合。

淬火加高温回火的热处理工艺总称为调质。

钢在300℃左右回火时,常使其脆性增大,这种现象称为第一类回火脆性。一般不应在这个温度区间回火。某些中碳合金结构钢在高温回火后,如果缓慢冷至室温,也易于变脆。这种现象称为第二类回火脆性。在钢中加入钼,或回火时在油或水中冷却,都可以防止第二类回火脆性。将第二类回火脆性的钢重新加热至原来的回火温度,便可以消除这种脆性。

六、钢的退火

概念:将钢加热、保温后缓慢冷却,以获得接近平衡组织的工艺过程。

1、完全退火

工艺:加热Ac3以上30-50℃→保温→随炉冷到500度以下→空冷室温。

目的:细化晶粒,均匀组织 ,提高塑韧性,消除内应力,便于机械加工。

2、等温退火

工艺:加热Ac3以上→保温→快冷至珠光体转变温度→等温停留→转变为P→出炉空冷;

目的:同上。但时间短,易控制,脱氧、脱碳小。(适用于过冷A比较稳定的合金钢及大型碳钢件)。

3、球化退火

概念:是使钢中的渗碳体球化的工艺过程。

对象:共析钢和过共析钢

工艺:

(1)等温球化退火加热Ac1以上20-30度→保温→迅速冷却到Ar1以下20度→等温→随炉冷至600度左右→出炉空冷。

(2)普通球化退火加热Ac1以上20-30度→保温→极缓慢冷却至600度左右→出炉空冷。(周期长,效率低,不适用)。

目的:降低硬度、提高塑韧性,便于切削加工。

机理:使片状或网状渗碳体变成颗粒状(球状)

说明:退火加热时,组织没有完全A化,所以又称不完全退火。

4、去应力退火

工艺:加热到Ac1以下某一温度(500-650度)→保温→缓冷至室温。

目的:消除铸件、锻件、焊接件等的残余内应力,稳定工件尺寸。

七、钢的回火

工艺:将淬火后的钢重新加热到A1以下某一温度保温,然后冷却(一般空冷)至室温。

目的:消除淬火产生的内应力,稳定工件尺寸,降低脆性,改善切削加工性能。

力学性能:随着回火温度的升高,硬度、强度下降,塑性韧性升高。

1、低温回火

150-250℃ ,M回,减少内应力和脆性,提高塑韧性,有较高的硬度和耐磨性。用于制作量具、刀具和滚动轴承等。

2、中温回火

350-500℃ ,T回,具有较高的弹性,有一定的塑性和硬度。用于制作弹簧、锻模等。

3、高温回火

500-650℃ ,S回,具有良好的综合力学性能。用于制作齿轮、曲轴等。

小编今天根据网络资料整理了一些基础的热处理的知识,稍有机械知识的人应该知道,热处理是赋予机械内在质量的灵魂,我国的机械加工并不差,但是热处理水平还尚待提升,燃烧吧,机械人当自强!

金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。

热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。这些过程互相衔接,不可间断。金属热处理工艺大体可分为整体热处理、表面热处理、局部热处理和化学热处理等。

一、整体热处理

整体热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的金属热处理工艺。钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。

1、退火:

是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。

2、正火:

是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善低碳材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。

3、淬火:

是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但同时变脆。

4、回火:

为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一适当温度进行长时间的保温,再进行冷却。

“四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺 。为了获得一定的强度和韧性,把淬火和高温回火结合起来的工艺,称为调质。某些合金淬火形成过饱和固溶体后,将其置于室温或稍高的适当温度下保持较长时间,以提高合金的硬度、强度或电性磁性等。这样的热处理工艺称为时效处理。

把压力加工形变与热处理有效而紧密地结合起来进行,使工件获得很好的强度、韧性配合的方法称为形变热处理;在负压气氛或真空中进行的热处理称为真空热处理,它不仅能使工件不氧化,不脱碳,保持处理后工件表面光洁,提高工件的性能,还可以通入渗剂进行化学热处理。

二、表面热处理

只加热工件表层,以改变其表层力学性能的金属热处理工艺。为了只加热工件表层而不使过多的热量传入工件内部,使用的热源须具有高的能量密度,即在单位面积的工件上给予较大的热能,使工件表层或局部能短时或瞬时达到高温。表面热处理的主要方法有火焰淬火和感应加热热处理,常用的热源有氧乙炔或氧丙烷等火焰、感应电流、激光和电子束等。

三、化学热处理

通过改变工件表层化学成分、组织和性能的金属热处理工艺。化学热处理与表面热处理不同之处是后者改变了工件表层的化学成分。化学热处理是将工件放在含碳、氮或其它合金元素的介质(气体、液体、固体)中加热,保温较长时间,从而使工件表层渗入碳、氮、硼和铬等元素。渗入元素后,有时还要进行其它热处理工艺如淬火及回火。化学热处理的主要方法有渗碳、渗氮、渗金属。

热处理是机械零件和工模具制造过程中的重要工序之一。它可以控制工件的各种性能 ,如耐磨、耐腐蚀、磁性能等。还可以改善毛坯的组织和应力状态,以利于进行各种冷、热加工。例如白口铸铁经过长时间退火处理可以获得可锻铸铁,提高塑性;齿轮采用正确的热处理工艺,使用寿命可以比不经热处理的齿轮成倍或几十倍地提高;另外,价廉的碳钢通过渗入某些合金元素就具有某些价昂的合金钢性能,可以代替某些耐热钢、不锈钢;工模具则几乎全部需要经过热处理方可使用。

四、退火和回火的区别

退火与回火的区别在于:(简单地说,退火就是不要硬度,回火还保留一定硬度)。

1、回火:

高温回火所得组织为回火索氏体。回火一般不单独使用,在零件淬火处理后进行回火,主要目的是消除淬火应力,得到要求的组织,回火根据回火温度的不同分为低温、中温和高温回火。分别得到回火马氏体、屈氏体和索氏体。其中淬火后进行高温回火相结合的热处理称为调质处理,其目的是获得强度,硬度和塑性,韧性都较好的综合机械性能。因此,广泛用于汽车,拖拉机,机床等的重要结构零件,如连杆,螺栓,齿轮及轴类。回火后硬度一般为HB200-330。

2、退火:

退火过程中发生得是珠光体转变,退火的主要目的是使金属内部组织达到或接近平衡状态,为后续加工和最终热处理做准备。去应力退火是为了消除由于塑性形变加工、焊接等而造成的以及铸件内存在的残余应力而进行的退火工艺。锻造、铸造、焊接以及切削加工后的工件内部存在内应力,如不及时消除,将使工件在加工和使用过程中发生变形,影响工件精度。采用去应力退火消除加工过程中产生的内应力十分重要。去应力退火的加热温度低于相变温度,因此,在整个热处理过程中不发生组织转变。内应力主要是通过工件在保温和缓冷过程中自然消除的。为了使工件内应力消除得更彻底,在加热时应控制加热温度。一般是低温进炉,然后以100℃/h左右得加热速度加热到规定温度。焊接件得加热温度应略高于600℃。保温时间视情况而定,通常为2~4h。铸件去应力退火的保温时间取上限,冷却速度控制在(20~50)℃/h,冷至300℃以下才能出炉空冷。时效处理可分为自然时效和人工时效两种自然时效是将铸件置于露天场地半年以上,便其缓缓地发生,从而使残余应力消除或减少,人工时效是将铸件加热到550~650℃进行去应力退火,它比自然时效节省时间,残余应力去除较为彻底。

3、什么叫回火?

回火是将淬火后的金属成材或零件加热到某一温度,保温一定时间后,以一定方式冷却的热处理工艺,回火是淬火后紧接着进行的一种操作,通常也是工件进行热处理的最后一道工序,因而把淬火和回火的联合工艺称为最终热处理。淬火与回火的主要目的是:

1)减少内应力和降低脆性,淬火件存在着很大的应力和脆性,如没有及时回火往往会产生变形甚至开裂。

2)调整工件的机械性能,工件淬火后,硬度高,脆性大,为了满足各种工件不同的性能要求,可以通过回火来调整,硬度,强度,塑性和韧性。

3)稳定工件尺寸。通过回火可使金相组织趋于稳定,以保证在以后的使用过程中不再发生变形。

4)改善某些合金钢的切削性能。

在生产中,常根据对工件性能的要求。按加热温度的不同,把回火分为低温回火,中温回火,和高温回火。淬火和随后的高温回火相结合的热处理工艺称为调质,即在具有高度强度的同时,又有好的塑性韧性。主要用于处理随较大载荷的机器结构零件,如机床主轴,汽车后桥半轴,强力齿轮等。

4、什么叫淬火?

淬火是把金属成材或零件加热到相变温度以上,保温后,以大于临界冷却速度的急剧冷却,以获得马氏体组织的热处理工艺。淬火是为了得到马氏体组织,再经回火后,使工件获得良好的使用性能,以充分发挥材料的潜力。其主要目的是:

1)提高金属成材或零件的机械性能。例如:提高工具、轴承等的硬度和耐磨性,提高弹簧的弹性极限,提高轴类零件的综合机械性能等。

2)改善某些特殊钢的材料性能或化学性能。如提高不锈钢的耐蚀性,增加磁钢的永磁性等。

淬火冷却时,除需合理选用淬火介质外,还要有正确的淬火方法,常用的淬火方法,主要有单液淬火,双液淬火,分级淬火、等温淬火,局部淬火等。

五、“四把火”的区别与联系

正火有以下目的和用途

1、对亚共析钢,正火用以消除铸、锻、焊件的过热粗晶组织和魏氏组织,轧材中的带状组织;细化晶粒;并可作为淬火前的预先热处理。

2、对过共析钢,正火可以消除网状二次渗碳体,并使珠光体细化,不但改善机械性能,而且有利于以后的球化退火。

3、对低碳深冲薄钢板,正火可以消除晶界的游离渗碳体,以改善其深冲性能。

4、对低碳钢和低碳低合金钢,采用正火,可得到较多的细片状珠光体组织,使硬度增高到HB140-190,避免切削时的“粘刀”现象,改善切削加工性。对中碳钢,在既可用正火又可用退火的场合下,用正火更为经济和方便。

5、对普通中碳结构钢,在力学性能要求不高的场合下,可用正火代替淬火加高温回火,不仅操作简便,而且使钢材的组织和尺寸稳定。

6、高温正火(Ac3以上150~200℃)由于高温下扩散速度较高,可以减少铸件和锻件的成分偏析。高温正火后的粗大晶粒可通过随后第二次较低温度的正火予以细化。

7、对某些用于汽轮机和锅炉的低、中碳合金钢,常采用正火以获得贝氏体组织,再经高温回火,用于400~550℃时具有良好的抗蠕变能力。

8、除钢件和钢材以外,正火还广泛用于球墨铸铁热处理,使其获得珠光体基体,提高球墨铸铁的强度。

由于正火的特点是空气冷却,因而环境气温、堆放方式、气流及工件尺寸对正火后的组织和性能均有影响。正火组织还可作为合金钢的一种分类方法。通常根据直径为25毫米的试样加热到900℃后,空冷得到的组织,将合金钢分为珠光体钢、贝氏体钢、马氏体钢和奥氏体钢。

退火是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却的一种金属热处理工艺。退火热处理分为完全退火,不完全退火和去应力退火。退火材料的力学性能可以用拉伸试验来检测,也可以用硬度试验来检测。许多钢材都是以退火热处理状态供货的,钢材硬度检测可以采用洛氏硬度计,测试HRB硬度,对于较薄的钢板、钢带以及薄壁钢管,可以采用表面洛氏硬度计,检测HRT硬度。

退火的目的在于:

1、改善或消除钢铁在铸造、锻压、轧制和焊接过程中所造成的各种组织缺陷以及残余应力,防止工件变形、开裂。

2、软化工件以便进行切削加工。

3、细化晶粒,改善组织以提高工件的机械性能。
4、为最终热处理(淬火、回火)作好组织准备。

常用的退火工艺有:

1、完全退火

用以细化中、低碳钢经铸造、锻压和焊接后出现的力学性能不佳的粗大过热组织。将工件加热到铁素体全部转变为奥氏体的温度以上30~50℃,保温一段时间,然后随炉缓慢冷却,在冷却过程中奥氏体再次发生转变,即可使钢的组织变细。

2、球化退火

用以降低工具钢和轴承钢锻压后的偏高硬度。将工件加热到钢开始形成奥氏体的温度以上20~40℃,保温后缓慢冷却,在冷却过程中珠光体中的片层状渗碳体变为球状,从而降低了硬度。

3、等温退火

用以降低某些镍、铬含量较高的合金结构钢的高硬度,以进行切削加工。一般先以较快速度冷却到奥氏体最不稳定的温度,保温适当时间,奥氏体转变为托氏体或索氏体,硬度即可降 低。

4、再结晶退火

用以消除金属线材、薄板在冷拔、冷轧过程中的硬化现象(硬度升高、塑性下降)。加热温度一般为钢开始形成奥氏体的温度以下50~150℃ ,只有这样才能消除加工硬化效应使金属软化。

5、石墨化退火

用以使含有大量渗碳体的铸铁变成塑性良好的可锻铸铁。工艺操作是将铸件加热到950℃左右,保温一定时间后适当冷却,使渗碳体分解形成团絮状石墨。

6、扩散退火

用以使合金铸件化学成分均匀化,提高其使用性能。方法是在不发生熔化的前提下,将铸件加热到尽可能高的温度,并长时间保温,待合金中各种元素扩散趋于均匀分布后缓冷。

7、去应力退火

用以消除钢铁铸件和焊接件的内应力。对于钢铁制品加热后开始形成奥氏体的温度以下100~200℃,保温后在空气中冷却,即可消除内应力。

淬火,金属和玻璃的一种热处理工艺。把合金制品或玻璃加热到一定温度,随即在水、油或空气中急速冷却,一般用以提高合金的硬度和强度。通称“蘸火”。将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理。

钢铁工件在淬火后具有以下特点:

1、得到了马氏体、贝氏体、残余奥氏体等不平衡(即不稳定)组织。

2、存在较大内应力。

3、力学性能不能满足要求。因此,钢铁工件淬火后一般都要经过回火。

回火的作用在于:

1、提高组织稳定性,使工件在使用过程中不再发生组织转变,从而使工件几何尺寸和性能保持稳定。

2、消除内应力,以便改善工件的使用性能并稳定工件几何尺寸。

3、调整钢铁的力学性能以满足使用要求。

回火之所以具有这些作用,是因为温度升高时,原子活动能力增强,钢铁中的铁、碳和其他合金元素的原子可以较快地进行扩散,实现原子的重新排列组合,从而使不稳定的不平衡组织逐步转变为稳定的平衡组织。内应力的消除还与温度升高时金属强度降低有关。一般钢铁回火时,硬度和强度下降,塑性提高。回火温度越高,这些力学性能的变化越大。有些合金元素含量较高的合金钢,在某一温度范围回火时,会析出一些颗粒细小的金属化合物,使强度和硬度上升。这种现象称为二次硬化。

回火要求:

用途不同的工件应在不同温度下回火,以满足使用中的要求。

1、刀具、轴承、渗碳淬火零件、表面淬火零件通常在250℃以下进行低温回火。低温回火后硬度变化不大,内应力减小,韧性稍有提高。

2、弹簧在350~500℃下中温回火,可获得较高的弹性和必要的韧性。

3、中碳结构钢制作的零件通常在500~600℃进行高温回火,以获得适宜的强度与韧性的良好配合。

淬火加高温回火的热处理工艺总称为调质。

钢在300℃左右回火时,常使其脆性增大,这种现象称为第一类回火脆性。一般不应在这个温度区间回火。某些中碳合金结构钢在高温回火后,如果缓慢冷至室温,也易于变脆。这种现象称为第二类回火脆性。在钢中加入钼,或回火时在油或水中冷却,都可以防止第二类回火脆性。将第二类回火脆性的钢重新加热至原来的回火温度,便可以消除这种脆性。

六、钢的退火

概念:将钢加热、保温后缓慢冷却,以获得接近平衡组织的工艺过程。

1、完全退火

工艺:加热Ac3以上30-50℃→保温→随炉冷到500度以下→空冷室温。

目的:细化晶粒,均匀组织 ,提高塑韧性,消除内应力,便于机械加工。

2、等温退火

工艺:加热Ac3以上→保温→快冷至珠光体转变温度→等温停留→转变为P→出炉空冷;

目的:同上。但时间短,易控制,脱氧、脱碳小。(适用于过冷A比较稳定的合金钢及大型碳钢件)。

3、球化退火

概念:是使钢中的渗碳体球化的工艺过程。

对象:共析钢和过共析钢

工艺:

(1)等温球化退火加热Ac1以上20-30度→保温→迅速冷却到Ar1以下20度→等温→随炉冷至600度左右→出炉空冷。

(2)普通球化退火加热Ac1以上20-30度→保温→极缓慢冷却至600度左右→出炉空冷。(周期长,效率低,不适用)。

目的:降低硬度、提高塑韧性,便于切削加工。

机理:使片状或网状渗碳体变成颗粒状(球状)

说明:退火加热时,组织没有完全A化,所以又称不完全退火。

4、去应力退火

工艺:加热到Ac1以下某一温度(500-650度)→保温→缓冷至室温。

目的:消除铸件、锻件、焊接件等的残余内应力,稳定工件尺寸。

七、钢的回火

工艺:将淬火后的钢重新加热到A1以下某一温度保温,然后冷却(一般空冷)至室温。

目的:消除淬火产生的内应力,稳定工件尺寸,降低脆性,改善切削加工性能。

力学性能:随着回火温度的升高,硬度、强度下降,塑性韧性升高。

1、低温回火

150-250℃ ,M回,减少内应力和脆性,提高塑韧性,有较高的硬度和耐磨性。用于制作量具、刀具和滚动轴承等。

2、中温回火

350-500℃ ,T回,具有较高的弹性,有一定的塑性和硬度。用于制作弹簧、锻模等。

3、高温回火

500-650℃ ,S回,具有良好的综合力学性能。用于制作齿轮、曲轴等 查看全部
小编今天根据网络资料整理了一些基础的热处理的知识,稍有机械知识的人应该知道,热处理是赋予机械内在质量的灵魂,我国的机械加工并不差,但是热处理水平还尚待提升,燃烧吧,机械人当自强!

金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。

热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。这些过程互相衔接,不可间断。金属热处理工艺大体可分为整体热处理、表面热处理、局部热处理和化学热处理等。

一、整体热处理

整体热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的金属热处理工艺。钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。

1、退火:

是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。

2、正火:

是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善低碳材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。

3、淬火:

是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但同时变脆。

4、回火:

为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一适当温度进行长时间的保温,再进行冷却。

“四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺 。为了获得一定的强度和韧性,把淬火和高温回火结合起来的工艺,称为调质。某些合金淬火形成过饱和固溶体后,将其置于室温或稍高的适当温度下保持较长时间,以提高合金的硬度、强度或电性磁性等。这样的热处理工艺称为时效处理。

把压力加工形变与热处理有效而紧密地结合起来进行,使工件获得很好的强度、韧性配合的方法称为形变热处理;在负压气氛或真空中进行的热处理称为真空热处理,它不仅能使工件不氧化,不脱碳,保持处理后工件表面光洁,提高工件的性能,还可以通入渗剂进行化学热处理。

二、表面热处理

只加热工件表层,以改变其表层力学性能的金属热处理工艺。为了只加热工件表层而不使过多的热量传入工件内部,使用的热源须具有高的能量密度,即在单位面积的工件上给予较大的热能,使工件表层或局部能短时或瞬时达到高温。表面热处理的主要方法有火焰淬火和感应加热热处理,常用的热源有氧乙炔或氧丙烷等火焰、感应电流、激光和电子束等。

三、化学热处理

通过改变工件表层化学成分、组织和性能的金属热处理工艺。化学热处理与表面热处理不同之处是后者改变了工件表层的化学成分。化学热处理是将工件放在含碳、氮或其它合金元素的介质(气体、液体、固体)中加热,保温较长时间,从而使工件表层渗入碳、氮、硼和铬等元素。渗入元素后,有时还要进行其它热处理工艺如淬火及回火。化学热处理的主要方法有渗碳、渗氮、渗金属。

热处理是机械零件和工模具制造过程中的重要工序之一。它可以控制工件的各种性能 ,如耐磨、耐腐蚀、磁性能等。还可以改善毛坯的组织和应力状态,以利于进行各种冷、热加工。例如白口铸铁经过长时间退火处理可以获得可锻铸铁,提高塑性;齿轮采用正确的热处理工艺,使用寿命可以比不经热处理的齿轮成倍或几十倍地提高;另外,价廉的碳钢通过渗入某些合金元素就具有某些价昂的合金钢性能,可以代替某些耐热钢、不锈钢;工模具则几乎全部需要经过热处理方可使用。

四、退火和回火的区别

退火与回火的区别在于:(简单地说,退火就是不要硬度,回火还保留一定硬度)。

1、回火:

高温回火所得组织为回火索氏体。回火一般不单独使用,在零件淬火处理后进行回火,主要目的是消除淬火应力,得到要求的组织,回火根据回火温度的不同分为低温、中温和高温回火。分别得到回火马氏体、屈氏体和索氏体。其中淬火后进行高温回火相结合的热处理称为调质处理,其目的是获得强度,硬度和塑性,韧性都较好的综合机械性能。因此,广泛用于汽车,拖拉机,机床等的重要结构零件,如连杆,螺栓,齿轮及轴类。回火后硬度一般为HB200-330。

2、退火:

退火过程中发生得是珠光体转变,退火的主要目的是使金属内部组织达到或接近平衡状态,为后续加工和最终热处理做准备。去应力退火是为了消除由于塑性形变加工、焊接等而造成的以及铸件内存在的残余应力而进行的退火工艺。锻造、铸造、焊接以及切削加工后的工件内部存在内应力,如不及时消除,将使工件在加工和使用过程中发生变形,影响工件精度。采用去应力退火消除加工过程中产生的内应力十分重要。去应力退火的加热温度低于相变温度,因此,在整个热处理过程中不发生组织转变。内应力主要是通过工件在保温和缓冷过程中自然消除的。为了使工件内应力消除得更彻底,在加热时应控制加热温度。一般是低温进炉,然后以100℃/h左右得加热速度加热到规定温度。焊接件得加热温度应略高于600℃。保温时间视情况而定,通常为2~4h。铸件去应力退火的保温时间取上限,冷却速度控制在(20~50)℃/h,冷至300℃以下才能出炉空冷。时效处理可分为自然时效和人工时效两种自然时效是将铸件置于露天场地半年以上,便其缓缓地发生,从而使残余应力消除或减少,人工时效是将铸件加热到550~650℃进行去应力退火,它比自然时效节省时间,残余应力去除较为彻底。

3、什么叫回火?

回火是将淬火后的金属成材或零件加热到某一温度,保温一定时间后,以一定方式冷却的热处理工艺,回火是淬火后紧接着进行的一种操作,通常也是工件进行热处理的最后一道工序,因而把淬火和回火的联合工艺称为最终热处理。淬火与回火的主要目的是:

1)减少内应力和降低脆性,淬火件存在着很大的应力和脆性,如没有及时回火往往会产生变形甚至开裂。

2)调整工件的机械性能,工件淬火后,硬度高,脆性大,为了满足各种工件不同的性能要求,可以通过回火来调整,硬度,强度,塑性和韧性。

3)稳定工件尺寸。通过回火可使金相组织趋于稳定,以保证在以后的使用过程中不再发生变形。

4)改善某些合金钢的切削性能。

在生产中,常根据对工件性能的要求。按加热温度的不同,把回火分为低温回火,中温回火,和高温回火。淬火和随后的高温回火相结合的热处理工艺称为调质,即在具有高度强度的同时,又有好的塑性韧性。主要用于处理随较大载荷的机器结构零件,如机床主轴,汽车后桥半轴,强力齿轮等。

4、什么叫淬火?

淬火是把金属成材或零件加热到相变温度以上,保温后,以大于临界冷却速度的急剧冷却,以获得马氏体组织的热处理工艺。淬火是为了得到马氏体组织,再经回火后,使工件获得良好的使用性能,以充分发挥材料的潜力。其主要目的是:

1)提高金属成材或零件的机械性能。例如:提高工具、轴承等的硬度和耐磨性,提高弹簧的弹性极限,提高轴类零件的综合机械性能等。

2)改善某些特殊钢的材料性能或化学性能。如提高不锈钢的耐蚀性,增加磁钢的永磁性等。

淬火冷却时,除需合理选用淬火介质外,还要有正确的淬火方法,常用的淬火方法,主要有单液淬火,双液淬火,分级淬火、等温淬火,局部淬火等。

五、“四把火”的区别与联系

正火有以下目的和用途

1、对亚共析钢,正火用以消除铸、锻、焊件的过热粗晶组织和魏氏组织,轧材中的带状组织;细化晶粒;并可作为淬火前的预先热处理。

2、对过共析钢,正火可以消除网状二次渗碳体,并使珠光体细化,不但改善机械性能,而且有利于以后的球化退火。

3、对低碳深冲薄钢板,正火可以消除晶界的游离渗碳体,以改善其深冲性能。

4、对低碳钢和低碳低合金钢,采用正火,可得到较多的细片状珠光体组织,使硬度增高到HB140-190,避免切削时的“粘刀”现象,改善切削加工性。对中碳钢,在既可用正火又可用退火的场合下,用正火更为经济和方便。

5、对普通中碳结构钢,在力学性能要求不高的场合下,可用正火代替淬火加高温回火,不仅操作简便,而且使钢材的组织和尺寸稳定。

6、高温正火(Ac3以上150~200℃)由于高温下扩散速度较高,可以减少铸件和锻件的成分偏析。高温正火后的粗大晶粒可通过随后第二次较低温度的正火予以细化。

7、对某些用于汽轮机和锅炉的低、中碳合金钢,常采用正火以获得贝氏体组织,再经高温回火,用于400~550℃时具有良好的抗蠕变能力。

8、除钢件和钢材以外,正火还广泛用于球墨铸铁热处理,使其获得珠光体基体,提高球墨铸铁的强度。

由于正火的特点是空气冷却,因而环境气温、堆放方式、气流及工件尺寸对正火后的组织和性能均有影响。正火组织还可作为合金钢的一种分类方法。通常根据直径为25毫米的试样加热到900℃后,空冷得到的组织,将合金钢分为珠光体钢、贝氏体钢、马氏体钢和奥氏体钢。

退火是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却的一种金属热处理工艺。退火热处理分为完全退火,不完全退火和去应力退火。退火材料的力学性能可以用拉伸试验来检测,也可以用硬度试验来检测。许多钢材都是以退火热处理状态供货的,钢材硬度检测可以采用洛氏硬度计,测试HRB硬度,对于较薄的钢板、钢带以及薄壁钢管,可以采用表面洛氏硬度计,检测HRT硬度。

退火的目的在于:

1、改善或消除钢铁在铸造、锻压、轧制和焊接过程中所造成的各种组织缺陷以及残余应力,防止工件变形、开裂。

2、软化工件以便进行切削加工。


3、细化晶粒,改善组织以提高工件的机械性能。


4、为最终热处理(淬火、回火)作好组织准备。

常用的退火工艺有:

1、完全退火

用以细化中、低碳钢经铸造、锻压和焊接后出现的力学性能不佳的粗大过热组织。将工件加热到铁素体全部转变为奥氏体的温度以上30~50℃,保温一段时间,然后随炉缓慢冷却,在冷却过程中奥氏体再次发生转变,即可使钢的组织变细。

2、球化退火

用以降低工具钢和轴承钢锻压后的偏高硬度。将工件加热到钢开始形成奥氏体的温度以上20~40℃,保温后缓慢冷却,在冷却过程中珠光体中的片层状渗碳体变为球状,从而降低了硬度。

3、等温退火

用以降低某些镍、铬含量较高的合金结构钢的高硬度,以进行切削加工。一般先以较快速度冷却到奥氏体最不稳定的温度,保温适当时间,奥氏体转变为托氏体或索氏体,硬度即可降 低。

4、再结晶退火

用以消除金属线材、薄板在冷拔、冷轧过程中的硬化现象(硬度升高、塑性下降)。加热温度一般为钢开始形成奥氏体的温度以下50~150℃ ,只有这样才能消除加工硬化效应使金属软化。

5、石墨化退火

用以使含有大量渗碳体的铸铁变成塑性良好的可锻铸铁。工艺操作是将铸件加热到950℃左右,保温一定时间后适当冷却,使渗碳体分解形成团絮状石墨。

6、扩散退火

用以使合金铸件化学成分均匀化,提高其使用性能。方法是在不发生熔化的前提下,将铸件加热到尽可能高的温度,并长时间保温,待合金中各种元素扩散趋于均匀分布后缓冷。

7、去应力退火

用以消除钢铁铸件和焊接件的内应力。对于钢铁制品加热后开始形成奥氏体的温度以下100~200℃,保温后在空气中冷却,即可消除内应力。

淬火,金属和玻璃的一种热处理工艺。把合金制品或玻璃加热到一定温度,随即在水、油或空气中急速冷却,一般用以提高合金的硬度和强度。通称“蘸火”。将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理。

钢铁工件在淬火后具有以下特点:

1、得到了马氏体、贝氏体、残余奥氏体等不平衡(即不稳定)组织。

2、存在较大内应力。

3、力学性能不能满足要求。因此,钢铁工件淬火后一般都要经过回火。

回火的作用在于:

1、提高组织稳定性,使工件在使用过程中不再发生组织转变,从而使工件几何尺寸和性能保持稳定。

2、消除内应力,以便改善工件的使用性能并稳定工件几何尺寸。

3、调整钢铁的力学性能以满足使用要求。

回火之所以具有这些作用,是因为温度升高时,原子活动能力增强,钢铁中的铁、碳和其他合金元素的原子可以较快地进行扩散,实现原子的重新排列组合,从而使不稳定的不平衡组织逐步转变为稳定的平衡组织。内应力的消除还与温度升高时金属强度降低有关。一般钢铁回火时,硬度和强度下降,塑性提高。回火温度越高,这些力学性能的变化越大。有些合金元素含量较高的合金钢,在某一温度范围回火时,会析出一些颗粒细小的金属化合物,使强度和硬度上升。这种现象称为二次硬化。

回火要求:

用途不同的工件应在不同温度下回火,以满足使用中的要求。

1、刀具、轴承、渗碳淬火零件、表面淬火零件通常在250℃以下进行低温回火。低温回火后硬度变化不大,内应力减小,韧性稍有提高。

2、弹簧在350~500℃下中温回火,可获得较高的弹性和必要的韧性。

3、中碳结构钢制作的零件通常在500~600℃进行高温回火,以获得适宜的强度与韧性的良好配合。

淬火加高温回火的热处理工艺总称为调质。

钢在300℃左右回火时,常使其脆性增大,这种现象称为第一类回火脆性。一般不应在这个温度区间回火。某些中碳合金结构钢在高温回火后,如果缓慢冷至室温,也易于变脆。这种现象称为第二类回火脆性。在钢中加入钼,或回火时在油或水中冷却,都可以防止第二类回火脆性。将第二类回火脆性的钢重新加热至原来的回火温度,便可以消除这种脆性。

六、钢的退火

概念:将钢加热、保温后缓慢冷却,以获得接近平衡组织的工艺过程。

1、完全退火

工艺:加热Ac3以上30-50℃→保温→随炉冷到500度以下→空冷室温。

目的:细化晶粒,均匀组织 ,提高塑韧性,消除内应力,便于机械加工。

2、等温退火

工艺:加热Ac3以上→保温→快冷至珠光体转变温度→等温停留→转变为P→出炉空冷;

目的:同上。但时间短,易控制,脱氧、脱碳小。(适用于过冷A比较稳定的合金钢及大型碳钢件)。

3、球化退火

概念:是使钢中的渗碳体球化的工艺过程。

对象:共析钢和过共析钢

工艺:

(1)等温球化退火加热Ac1以上20-30度→保温→迅速冷却到Ar1以下20度→等温→随炉冷至600度左右→出炉空冷。

(2)普通球化退火加热Ac1以上20-30度→保温→极缓慢冷却至600度左右→出炉空冷。(周期长,效率低,不适用)。

目的:降低硬度、提高塑韧性,便于切削加工。

机理:使片状或网状渗碳体变成颗粒状(球状)

说明:退火加热时,组织没有完全A化,所以又称不完全退火。

4、去应力退火

工艺:加热到Ac1以下某一温度(500-650度)→保温→缓冷至室温。

目的:消除铸件、锻件、焊接件等的残余内应力,稳定工件尺寸。

七、钢的回火

工艺:将淬火后的钢重新加热到A1以下某一温度保温,然后冷却(一般空冷)至室温。

目的:消除淬火产生的内应力,稳定工件尺寸,降低脆性,改善切削加工性能。

力学性能:随着回火温度的升高,硬度、强度下降,塑性韧性升高。

1、低温回火

150-250℃ ,M回,减少内应力和脆性,提高塑韧性,有较高的硬度和耐磨性。用于制作量具、刀具和滚动轴承等。

2、中温回火

350-500℃ ,T回,具有较高的弹性,有一定的塑性和硬度。用于制作弹簧、锻模等。

3、高温回火

500-650℃ ,S回,具有良好的综合力学性能。用于制作齿轮、曲轴等。

小编今天根据网络资料整理了一些基础的热处理的知识,稍有机械知识的人应该知道,热处理是赋予机械内在质量的灵魂,我国的机械加工并不差,但是热处理水平还尚待提升,燃烧吧,机械人当自强!

金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。

热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。这些过程互相衔接,不可间断。金属热处理工艺大体可分为整体热处理、表面热处理、局部热处理和化学热处理等。

一、整体热处理

整体热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的金属热处理工艺。钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。

1、退火:

是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。

2、正火:

是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善低碳材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。

3、淬火:

是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但同时变脆。

4、回火:

为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一适当温度进行长时间的保温,再进行冷却。

“四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺 。为了获得一定的强度和韧性,把淬火和高温回火结合起来的工艺,称为调质。某些合金淬火形成过饱和固溶体后,将其置于室温或稍高的适当温度下保持较长时间,以提高合金的硬度、强度或电性磁性等。这样的热处理工艺称为时效处理。

把压力加工形变与热处理有效而紧密地结合起来进行,使工件获得很好的强度、韧性配合的方法称为形变热处理;在负压气氛或真空中进行的热处理称为真空热处理,它不仅能使工件不氧化,不脱碳,保持处理后工件表面光洁,提高工件的性能,还可以通入渗剂进行化学热处理。

二、表面热处理

只加热工件表层,以改变其表层力学性能的金属热处理工艺。为了只加热工件表层而不使过多的热量传入工件内部,使用的热源须具有高的能量密度,即在单位面积的工件上给予较大的热能,使工件表层或局部能短时或瞬时达到高温。表面热处理的主要方法有火焰淬火和感应加热热处理,常用的热源有氧乙炔或氧丙烷等火焰、感应电流、激光和电子束等。

三、化学热处理

通过改变工件表层化学成分、组织和性能的金属热处理工艺。化学热处理与表面热处理不同之处是后者改变了工件表层的化学成分。化学热处理是将工件放在含碳、氮或其它合金元素的介质(气体、液体、固体)中加热,保温较长时间,从而使工件表层渗入碳、氮、硼和铬等元素。渗入元素后,有时还要进行其它热处理工艺如淬火及回火。化学热处理的主要方法有渗碳、渗氮、渗金属。

热处理是机械零件和工模具制造过程中的重要工序之一。它可以控制工件的各种性能 ,如耐磨、耐腐蚀、磁性能等。还可以改善毛坯的组织和应力状态,以利于进行各种冷、热加工。例如白口铸铁经过长时间退火处理可以获得可锻铸铁,提高塑性;齿轮采用正确的热处理工艺,使用寿命可以比不经热处理的齿轮成倍或几十倍地提高;另外,价廉的碳钢通过渗入某些合金元素就具有某些价昂的合金钢性能,可以代替某些耐热钢、不锈钢;工模具则几乎全部需要经过热处理方可使用。

四、退火和回火的区别

退火与回火的区别在于:(简单地说,退火就是不要硬度,回火还保留一定硬度)。

1、回火:

高温回火所得组织为回火索氏体。回火一般不单独使用,在零件淬火处理后进行回火,主要目的是消除淬火应力,得到要求的组织,回火根据回火温度的不同分为低温、中温和高温回火。分别得到回火马氏体、屈氏体和索氏体。其中淬火后进行高温回火相结合的热处理称为调质处理,其目的是获得强度,硬度和塑性,韧性都较好的综合机械性能。因此,广泛用于汽车,拖拉机,机床等的重要结构零件,如连杆,螺栓,齿轮及轴类。回火后硬度一般为HB200-330。

2、退火:

退火过程中发生得是珠光体转变,退火的主要目的是使金属内部组织达到或接近平衡状态,为后续加工和最终热处理做准备。去应力退火是为了消除由于塑性形变加工、焊接等而造成的以及铸件内存在的残余应力而进行的退火工艺。锻造、铸造、焊接以及切削加工后的工件内部存在内应力,如不及时消除,将使工件在加工和使用过程中发生变形,影响工件精度。采用去应力退火消除加工过程中产生的内应力十分重要。去应力退火的加热温度低于相变温度,因此,在整个热处理过程中不发生组织转变。内应力主要是通过工件在保温和缓冷过程中自然消除的。为了使工件内应力消除得更彻底,在加热时应控制加热温度。一般是低温进炉,然后以100℃/h左右得加热速度加热到规定温度。焊接件得加热温度应略高于600℃。保温时间视情况而定,通常为2~4h。铸件去应力退火的保温时间取上限,冷却速度控制在(20~50)℃/h,冷至300℃以下才能出炉空冷。时效处理可分为自然时效和人工时效两种自然时效是将铸件置于露天场地半年以上,便其缓缓地发生,从而使残余应力消除或减少,人工时效是将铸件加热到550~650℃进行去应力退火,它比自然时效节省时间,残余应力去除较为彻底。

3、什么叫回火?

回火是将淬火后的金属成材或零件加热到某一温度,保温一定时间后,以一定方式冷却的热处理工艺,回火是淬火后紧接着进行的一种操作,通常也是工件进行热处理的最后一道工序,因而把淬火和回火的联合工艺称为最终热处理。淬火与回火的主要目的是:

1)减少内应力和降低脆性,淬火件存在着很大的应力和脆性,如没有及时回火往往会产生变形甚至开裂。

2)调整工件的机械性能,工件淬火后,硬度高,脆性大,为了满足各种工件不同的性能要求,可以通过回火来调整,硬度,强度,塑性和韧性。

3)稳定工件尺寸。通过回火可使金相组织趋于稳定,以保证在以后的使用过程中不再发生变形。

4)改善某些合金钢的切削性能。

在生产中,常根据对工件性能的要求。按加热温度的不同,把回火分为低温回火,中温回火,和高温回火。淬火和随后的高温回火相结合的热处理工艺称为调质,即在具有高度强度的同时,又有好的塑性韧性。主要用于处理随较大载荷的机器结构零件,如机床主轴,汽车后桥半轴,强力齿轮等。

4、什么叫淬火?

淬火是把金属成材或零件加热到相变温度以上,保温后,以大于临界冷却速度的急剧冷却,以获得马氏体组织的热处理工艺。淬火是为了得到马氏体组织,再经回火后,使工件获得良好的使用性能,以充分发挥材料的潜力。其主要目的是:

1)提高金属成材或零件的机械性能。例如:提高工具、轴承等的硬度和耐磨性,提高弹簧的弹性极限,提高轴类零件的综合机械性能等。

2)改善某些特殊钢的材料性能或化学性能。如提高不锈钢的耐蚀性,增加磁钢的永磁性等。

淬火冷却时,除需合理选用淬火介质外,还要有正确的淬火方法,常用的淬火方法,主要有单液淬火,双液淬火,分级淬火、等温淬火,局部淬火等。

五、“四把火”的区别与联系

正火有以下目的和用途

1、对亚共析钢,正火用以消除铸、锻、焊件的过热粗晶组织和魏氏组织,轧材中的带状组织;细化晶粒;并可作为淬火前的预先热处理。

2、对过共析钢,正火可以消除网状二次渗碳体,并使珠光体细化,不但改善机械性能,而且有利于以后的球化退火。

3、对低碳深冲薄钢板,正火可以消除晶界的游离渗碳体,以改善其深冲性能。

4、对低碳钢和低碳低合金钢,采用正火,可得到较多的细片状珠光体组织,使硬度增高到HB140-190,避免切削时的“粘刀”现象,改善切削加工性。对中碳钢,在既可用正火又可用退火的场合下,用正火更为经济和方便。

5、对普通中碳结构钢,在力学性能要求不高的场合下,可用正火代替淬火加高温回火,不仅操作简便,而且使钢材的组织和尺寸稳定。

6、高温正火(Ac3以上150~200℃)由于高温下扩散速度较高,可以减少铸件和锻件的成分偏析。高温正火后的粗大晶粒可通过随后第二次较低温度的正火予以细化。

7、对某些用于汽轮机和锅炉的低、中碳合金钢,常采用正火以获得贝氏体组织,再经高温回火,用于400~550℃时具有良好的抗蠕变能力。

8、除钢件和钢材以外,正火还广泛用于球墨铸铁热处理,使其获得珠光体基体,提高球墨铸铁的强度。

由于正火的特点是空气冷却,因而环境气温、堆放方式、气流及工件尺寸对正火后的组织和性能均有影响。正火组织还可作为合金钢的一种分类方法。通常根据直径为25毫米的试样加热到900℃后,空冷得到的组织,将合金钢分为珠光体钢、贝氏体钢、马氏体钢和奥氏体钢。

退火是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却的一种金属热处理工艺。退火热处理分为完全退火,不完全退火和去应力退火。退火材料的力学性能可以用拉伸试验来检测,也可以用硬度试验来检测。许多钢材都是以退火热处理状态供货的,钢材硬度检测可以采用洛氏硬度计,测试HRB硬度,对于较薄的钢板、钢带以及薄壁钢管,可以采用表面洛氏硬度计,检测HRT硬度。

退火的目的在于:

1、改善或消除钢铁在铸造、锻压、轧制和焊接过程中所造成的各种组织缺陷以及残余应力,防止工件变形、开裂。

2、软化工件以便进行切削加工。

3、细化晶粒,改善组织以提高工件的机械性能。
4、为最终热处理(淬火、回火)作好组织准备。

常用的退火工艺有:

1、完全退火

用以细化中、低碳钢经铸造、锻压和焊接后出现的力学性能不佳的粗大过热组织。将工件加热到铁素体全部转变为奥氏体的温度以上30~50℃,保温一段时间,然后随炉缓慢冷却,在冷却过程中奥氏体再次发生转变,即可使钢的组织变细。

2、球化退火

用以降低工具钢和轴承钢锻压后的偏高硬度。将工件加热到钢开始形成奥氏体的温度以上20~40℃,保温后缓慢冷却,在冷却过程中珠光体中的片层状渗碳体变为球状,从而降低了硬度。

3、等温退火

用以降低某些镍、铬含量较高的合金结构钢的高硬度,以进行切削加工。一般先以较快速度冷却到奥氏体最不稳定的温度,保温适当时间,奥氏体转变为托氏体或索氏体,硬度即可降 低。

4、再结晶退火

用以消除金属线材、薄板在冷拔、冷轧过程中的硬化现象(硬度升高、塑性下降)。加热温度一般为钢开始形成奥氏体的温度以下50~150℃ ,只有这样才能消除加工硬化效应使金属软化。

5、石墨化退火

用以使含有大量渗碳体的铸铁变成塑性良好的可锻铸铁。工艺操作是将铸件加热到950℃左右,保温一定时间后适当冷却,使渗碳体分解形成团絮状石墨。

6、扩散退火

用以使合金铸件化学成分均匀化,提高其使用性能。方法是在不发生熔化的前提下,将铸件加热到尽可能高的温度,并长时间保温,待合金中各种元素扩散趋于均匀分布后缓冷。

7、去应力退火

用以消除钢铁铸件和焊接件的内应力。对于钢铁制品加热后开始形成奥氏体的温度以下100~200℃,保温后在空气中冷却,即可消除内应力。

淬火,金属和玻璃的一种热处理工艺。把合金制品或玻璃加热到一定温度,随即在水、油或空气中急速冷却,一般用以提高合金的硬度和强度。通称“蘸火”。将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理。

钢铁工件在淬火后具有以下特点:

1、得到了马氏体、贝氏体、残余奥氏体等不平衡(即不稳定)组织。

2、存在较大内应力。

3、力学性能不能满足要求。因此,钢铁工件淬火后一般都要经过回火。

回火的作用在于:

1、提高组织稳定性,使工件在使用过程中不再发生组织转变,从而使工件几何尺寸和性能保持稳定。

2、消除内应力,以便改善工件的使用性能并稳定工件几何尺寸。

3、调整钢铁的力学性能以满足使用要求。

回火之所以具有这些作用,是因为温度升高时,原子活动能力增强,钢铁中的铁、碳和其他合金元素的原子可以较快地进行扩散,实现原子的重新排列组合,从而使不稳定的不平衡组织逐步转变为稳定的平衡组织。内应力的消除还与温度升高时金属强度降低有关。一般钢铁回火时,硬度和强度下降,塑性提高。回火温度越高,这些力学性能的变化越大。有些合金元素含量较高的合金钢,在某一温度范围回火时,会析出一些颗粒细小的金属化合物,使强度和硬度上升。这种现象称为二次硬化。

回火要求:

用途不同的工件应在不同温度下回火,以满足使用中的要求。

1、刀具、轴承、渗碳淬火零件、表面淬火零件通常在250℃以下进行低温回火。低温回火后硬度变化不大,内应力减小,韧性稍有提高。

2、弹簧在350~500℃下中温回火,可获得较高的弹性和必要的韧性。

3、中碳结构钢制作的零件通常在500~600℃进行高温回火,以获得适宜的强度与韧性的良好配合。

淬火加高温回火的热处理工艺总称为调质。

钢在300℃左右回火时,常使其脆性增大,这种现象称为第一类回火脆性。一般不应在这个温度区间回火。某些中碳合金结构钢在高温回火后,如果缓慢冷至室温,也易于变脆。这种现象称为第二类回火脆性。在钢中加入钼,或回火时在油或水中冷却,都可以防止第二类回火脆性。将第二类回火脆性的钢重新加热至原来的回火温度,便可以消除这种脆性。

六、钢的退火

概念:将钢加热、保温后缓慢冷却,以获得接近平衡组织的工艺过程。

1、完全退火

工艺:加热Ac3以上30-50℃→保温→随炉冷到500度以下→空冷室温。

目的:细化晶粒,均匀组织 ,提高塑韧性,消除内应力,便于机械加工。

2、等温退火

工艺:加热Ac3以上→保温→快冷至珠光体转变温度→等温停留→转变为P→出炉空冷;

目的:同上。但时间短,易控制,脱氧、脱碳小。(适用于过冷A比较稳定的合金钢及大型碳钢件)。

3、球化退火

概念:是使钢中的渗碳体球化的工艺过程。

对象:共析钢和过共析钢

工艺:

(1)等温球化退火加热Ac1以上20-30度→保温→迅速冷却到Ar1以下20度→等温→随炉冷至600度左右→出炉空冷。

(2)普通球化退火加热Ac1以上20-30度→保温→极缓慢冷却至600度左右→出炉空冷。(周期长,效率低,不适用)。

目的:降低硬度、提高塑韧性,便于切削加工。

机理:使片状或网状渗碳体变成颗粒状(球状)

说明:退火加热时,组织没有完全A化,所以又称不完全退火。

4、去应力退火

工艺:加热到Ac1以下某一温度(500-650度)→保温→缓冷至室温。

目的:消除铸件、锻件、焊接件等的残余内应力,稳定工件尺寸。

七、钢的回火

工艺:将淬火后的钢重新加热到A1以下某一温度保温,然后冷却(一般空冷)至室温。

目的:消除淬火产生的内应力,稳定工件尺寸,降低脆性,改善切削加工性能。

力学性能:随着回火温度的升高,硬度、强度下降,塑性韧性升高。

1、低温回火

150-250℃ ,M回,减少内应力和脆性,提高塑韧性,有较高的硬度和耐磨性。用于制作量具、刀具和滚动轴承等。

2、中温回火

350-500℃ ,T回,具有较高的弹性,有一定的塑性和硬度。用于制作弹簧、锻模等。

3、高温回火

500-650℃ ,S回,具有良好的综合力学性能。用于制作齿轮、曲轴等
511 浏览

热处理工艺

电气控制类 传用轴 2016-11-03 11:49 发表了文章 来自相关话题

以调质态40Cr为研究对象,通过一系列压缩试验,分析了不同调质态、不同 压下量下的压缩变形后试样硬度的分布及变化规律。采用有限元模拟获得了相应的 压缩变形后的等效应变分布规律,并构建了室温条件下等效应变与维氏硬度关系。结 果表明:预测值与实测值比较吻合,最大误差仅为1.88 。 
 链接:http://pan.baidu.com/s/1o7OOP1g 密码:n9fo 查看全部
以调质态40Cr为研究对象,通过一系列压缩试验,分析了不同调质态、不同 压下量下的压缩变形后试样硬度的分布及变化规律。采用有限元模拟获得了相应的 压缩变形后的等效应变分布规律,并构建了室温条件下等效应变与维氏硬度关系。结 果表明:预测值与实测值比较吻合,最大误差仅为1.88 。 
 链接:http://pan.baidu.com/s/1o7OOP1g 密码:n9fo
482 浏览

正火、退火、淬火、回火你都分清楚了吗!

智能制造类 晨光中的金玫瑰 2016-11-01 10:00 发表了文章 来自相关话题

退火与回火的区别在于:(简单地说,退火就是不要硬度,回火还保留一定硬度)。
回火:
高温回火所得组织为回火索氏体。回火一般不单独使用,在零件淬火处理后进行回火,主要目的是消除淬火应力,得到要求的组织,回火根据回火温度的不同分为低温、中温和高温回火。分别得到回火马氏体、屈氏体和索氏体。其中淬火后进行高温回火相结合的热处理称为调质处理,其目的是获得强度,硬度和塑性,韧性都较好的综合机械性能。因此,广泛用于汽车,拖拉机,机床等的重要结构零件,如连杆,螺栓,齿轮及轴类。回火后硬度一般为HB200-330。
退火:
退火过程中发生得是珠光体转变,退火的主要目的是使金属内部组织达到或接近平衡状态,为后续加工和最终热处理做准备。去应力退火是为了消除由于塑性形变加工、焊接等而造成的以及铸件内存在的残余应力而进行的退火工艺。锻造、铸造、焊接以及切削加工后的工件内部存在内应力,如不及时消除,将使工件在加工和使用过程中发生变形,影响工件精度。采用去应力退火消除加工过程中产生的内应力十分重要。去应力退火的加热温度低于相变温度,因此,在整个热处理过程中不发生组织转变。内应力主要是通过工件在保温和缓冷过程中自然消除的。为了使工件内应力消除得更彻底,在加热时应控制加热温度。一般是低温进炉,然后以100℃/h左右得加热速度加热到规定温度。焊接件得加热温度应略高于600℃。保温时间视情况而定,通常为2~4h。铸件去应力退火的保温时间取上限,冷却速度控制在(20~50)℃/h,冷至300℃以下才能出炉空冷。时效处理可分为自然时效和人工时效两种自然时效是将铸件置于露天场地半年以上,便其缓缓地发生,从而使残余应力消除或减少,人工时效是将铸件加热到550~650℃进行去应力退火,它比自然时效节省时间,残余应力去除较为彻底。

什么叫回火?  

回火是将淬火后的金属成材或零件加热到某一温度,保温一定时间后,以一定方式冷却的热处理工艺,回火是淬火后紧接着进行的一种操作,通常也是工件进行热处理的最后一道工序,因而把淬火和回火的联合工艺称为最终热处理。淬火与回火的主要目的是:

1)减少内应力和降低脆性,淬火件存在着很大的应力和脆性,如没有及时回火往往会产生变形甚至开裂。

2)调整工件的机械性能,工件淬火后,硬度高,脆性大,为了满足各种工件不同的性能要求,可以通过回火来调整,硬度,强度,塑性和韧性。

3)稳定工件尺寸。通过回火可使金相组织趋于稳定,以保证在以后的使用过程中不再发生变形。

4)改善某些合金钢的切削性能。

在生产中,常根据对工件性能的要求。按加热温度的不同,把回火分为低温回火,中温回火,和高温回火。淬火和随后的高温回火相结合的热处理工艺称为调质,即在具有高度强度的同时,又有好的塑性韧性。主要用于处理随较大载荷的机器结构零件,如机床主轴,汽车后桥半轴,强力齿轮等。
什么叫淬火?

淬火是把金属成材或零件加热到相变温度以上,保温后,以大于临界冷却速度的急剧冷却,以获得马氏体组织的热处理工艺。淬火是为了得到马氏体组织,再经回火后,使工件获得良好的使用性能,以充分发挥材料的潜力。其主要目的是:  

1)提高金属成材或零件的机械性能。例如:提高工具、轴承等的硬度和耐磨性,提高弹簧的弹性极限,提高轴类零件的综合机械性能等。  

2)改善某些特殊钢的材料性能或化学性能。如提高不锈钢的耐蚀性,增加磁钢的永磁性等。

淬火冷却时,除需合理选用淬火介质外,还要有正确的淬火方法,常用的淬火方法,主要有单液淬火,双液淬火,分级淬火、等温淬火,局部淬火等。

正火、淬火、退火、回火的区别与联系
正火有以下目的和用途。  

① 对亚共析钢,正火用以消除铸、锻、焊件的过热粗晶组织和魏氏组织,轧材中的带状组织;细化晶粒;并可作为淬火前的预先热处理。

② 对过共析钢,正火可以消除网状二次渗碳体,并使珠光体细化,不但改善机械性能,而且有利于以后的球化退火。

③ 对低碳深冲薄钢板,正火可以消除晶界的游离渗碳体,以改善其深冲性能。

④ 对低碳钢和低碳低合金钢,采用正火,可得到较多的细片状珠光体组织,使硬度增高到HB140-190,避免切削时的“粘刀”现象,改善切削加工性。对中碳钢,在既可用正火又可用退火的场合下,用正火更为经济和方便。

⑤ 对普通中碳结构钢,在力学性能要求不高的场合下,可用正火代替淬火加高温回火,不仅操作简便,而且使钢材的组织和尺寸稳定。

⑥ 高温正火(Ac3以上150~200℃)由于高温下扩散速度较高,可以减少铸件和锻件的成分偏析。高温正火后的粗大晶粒可通过随后第二次较低温度的正火予以细化。

⑦ 对某些用于汽轮机和锅炉的低、中碳合金钢,常采用正火以获得贝氏体组织,再经高温回火,用于400~550℃时具有良好的抗蠕变能力。

⑧ 除钢件和钢材以外,正火还广泛用于球墨铸铁热处理,使其获得珠光体基体,提高球墨铸铁的强度。

由于正火的特点是空气冷却,因而环境气温、堆放方式、气流及工件尺寸对正火后的组织和性能均有影响。正火组织还可作为合金钢的一种分类方法。通常根据直径为25毫米的试样加热到900℃后,空冷得到的组织,将合金钢分为珠光体钢、贝氏体钢、马氏体钢和奥氏体钢。

退火是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却的一种金属热处理工艺。退火热处理分为完全退火,不完全退火和去应力退火。退火材料的力学性能可以用拉伸试验来检测,也可以用硬度试验来检测。许多钢材都是以退火热处理状态供货的,钢材硬度检测可以采用洛氏硬度计,测试HRB硬度,对于较薄的钢板、钢带以及薄壁钢管,可以采用表面洛氏硬度计,检测HRT硬度。

退火的目的在于:

① 改善或消除钢铁在铸造、锻压、轧制和焊接过程中所造成的各种组织缺陷以及残余应力,防止工件变形、开裂。

② 软化工件以便进行切削加工。

③ 细化晶粒,改善组织以提高工件的机械性能。

④ 为最终热处理(淬火、回火)作好组织准备。
常用的退火工艺有:

① 完全退火。用以细化中、低碳钢经铸造、锻压和焊接后出现的力学性能不佳的粗大过热组织。将工件加热到铁素体全部转变为奥氏体的温度以上30~50℃,保温一段时间,然后随炉缓慢冷却,在冷却过程中奥氏体再次发生转变,即可使钢的组织变细。

② 球化退火。用以降低工具钢和轴承钢锻压后的偏高硬度。将工件加热到钢开始形成奥氏体的温度以上20~40℃,保温后缓慢冷却,在冷却过程中珠光体中的片层状渗碳体变为球状,从而降低了硬度。

③ 等温退火。用以降低某些镍、铬含量较高的合金结构钢的高硬度,以进行切削加工。一般先以较快速度冷却到奥氏体最不稳定的温度,保温适当时间,奥氏体转变为托氏体或索氏体,硬度即可降 低。  

④ 再结晶退火。用以消除金属线材、薄板在冷拔、冷轧过程中的硬化现象(硬度升高、塑性下降)。加热温度一般为钢开始形成奥氏体的温度以下50~150℃ ,只有这样才能消除加工硬化效应使金属软化。

⑤ 石墨化退火。用以使含有大量渗碳体的铸铁变成塑性良好的可锻铸铁。工艺操作是将铸件加热到950℃左右,保温一定时间后适当冷却,使渗碳体分解形成团絮状石墨。

⑥ 扩散退火。用以使合金铸件化学成分均匀化,提高其使用性能。方法是在不发生熔化的前提下,将铸件加热到尽可能高的温度,并长时间保温,待合金中各种元素扩散趋于均匀分布后缓冷。

⑦ 去应力退火。用以消除钢铁铸件和焊接件的内应力。对于钢铁制品加热后开始形成奥氏体的温度以下100~200℃,保温后在空气中冷却,即可消除内应力。




淬火,金属和玻璃的一种热处理工艺。把合金制品或玻璃加热到一定温度,随即在水、油或空气中急速冷却,一般用以提高合金的硬度和强度。通称“蘸火”。将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理。钢铁工件在淬火后具有以下特点:

① 得到了马氏体、贝氏体、残余奥氏体等不平衡(即不稳定)组织。

② 存在较大内应力。

③ 力学性能不能满足要求。因此,钢铁工件淬火后一般都要经过回火。
回火的作用在于:

① 提高组织稳定性,使工件在使用过程中不再发生组织转变,从而使工件几何尺寸和性能保持稳定。

② 消除内应力,以便改善工件的使用性能并稳定工件几何尺寸。

③ 调整钢铁的力学性能以满足使用要求。

回火之所以具有这些作用,是因为温度升高时,原子活动能力增强,钢铁中的铁、碳和其他合金元素的原子可以较快地进行扩散,实现原子的重新排列组合,从而使不稳定的不平衡组织逐步转变为稳定的平衡组织。内应力的消除还与温度升高时金属强度降低有关。一般钢铁回火时,硬度和强度下降,塑性提高。回火温度越高,这些力学性能的变化越大。有些合金元素含量较高的合金钢,在某一温度范围回火时,会析出一些颗粒细小的金属化合物,使强度和硬度上升。这种现象称为二次硬化。
回火要求:用途不同的工件应在不同温度下回火,以满足使用中的要求。

① 刀具、轴承、渗碳淬火零件、表面淬火零件通常在250℃以下进行低温回火。低温回火后硬度变化不大,内应力减小,韧性稍有提高。

② 弹簧在350~500℃下中温回火,可获得较高的弹性和必要的韧性。

③ 中碳结构钢制作的零件通常在500~600℃进行高温回火,以获得适宜的强度与韧性的良好配合。

淬火加高温回火的热处理工艺总称为调质。

钢在300℃左右回火时,常使其脆性增大,这种现象称为第一类回火脆性。一般不应在这个温度区间回火。某些中碳合金结构钢在高温回火后,如果缓慢冷至室温,也易于变脆。这种现象称为第二类回火脆性。在钢中加入钼,或回火时在油或水中冷却,都可以防止第二类回火脆性。将第二类回火脆性的钢重新加热至原来的回火温度,便可以消除这种脆性。
一.钢的退火

概念:将钢加热、保温后缓慢冷却,以获得接近平衡组织的工艺过程。

1、完全退火

工艺:加热Ac3以上30-50℃→保温→随炉冷到500度以下→空冷室温。

目的:细化晶粒,均匀组织 ,提高塑韧性,消除内应力,便于机械加工。

2、等温退火

工艺:加热Ac3以上→保温→快冷至珠光体转变温度→等温停留→转变为P→出炉空冷;

目的:同上。但时间短,易控制,脱氧、脱碳小。(适用于过冷A比较稳定的合金钢及大型碳钢件)。  

3、球化退火

概念:是使钢中的渗碳体球化的工艺过程。

对象:共析钢和过共析钢

工艺:

(1)等温球化退火加热Ac1以上20-30度→保温→迅速冷却到Ar1以下20度→等温→随炉冷至600度左右→出炉空冷。

(2)普通球化退火加热Ac1以上20-30度→保温→极缓慢冷却至600度左右→出炉空冷。(周期长,效率低,不适用)。  

目的:降低硬度、提高塑韧性,便于切削加工。

机理:使片状或网状渗碳体变成颗粒状(球状)

说明:退火加热时,组织没有完全A化,所以又称不完全退火。

4、去应力退火

工艺:加热到Ac1以下某一温度(500-650度)→保温→缓冷至室温。

目的:消除铸件、锻件、焊接件等的残余内应力,稳定工件尺寸。
二.钢的回火
工艺:将淬火后的钢重新加热到A1以下某一温度保温,然后冷却(一般空冷)至室温。

目的:消除淬火产生的内应力,稳定工件尺寸,降低脆性,改善切削加工性能。

力学性能:随着回火温度的升高,硬度、强度下降,塑性韧性升高。

1、低温回火:150-250℃ ,M回,减少内应力和脆性,提高塑韧性,有较高的硬度和耐磨性。用于制作量具、刀具和滚动轴承等。

2、中温回火:350-500℃ ,T回,具有较高的弹性,有一定的塑性和硬度。用于制作弹簧、锻模等。

3、高温回火:500-650℃ ,S回,具有良好的综合力学性能。用于制作齿轮、曲轴等。 查看全部
退火与回火的区别在于:(简单地说,退火就是不要硬度,回火还保留一定硬度)。
回火:
高温回火所得组织为回火索氏体。回火一般不单独使用,在零件淬火处理后进行回火,主要目的是消除淬火应力,得到要求的组织,回火根据回火温度的不同分为低温、中温和高温回火。分别得到回火马氏体、屈氏体和索氏体。其中淬火后进行高温回火相结合的热处理称为调质处理,其目的是获得强度,硬度和塑性,韧性都较好的综合机械性能。因此,广泛用于汽车,拖拉机,机床等的重要结构零件,如连杆,螺栓,齿轮及轴类。回火后硬度一般为HB200-330。
退火:
退火过程中发生得是珠光体转变,退火的主要目的是使金属内部组织达到或接近平衡状态,为后续加工和最终热处理做准备。去应力退火是为了消除由于塑性形变加工、焊接等而造成的以及铸件内存在的残余应力而进行的退火工艺。锻造、铸造、焊接以及切削加工后的工件内部存在内应力,如不及时消除,将使工件在加工和使用过程中发生变形,影响工件精度。采用去应力退火消除加工过程中产生的内应力十分重要。去应力退火的加热温度低于相变温度,因此,在整个热处理过程中不发生组织转变。内应力主要是通过工件在保温和缓冷过程中自然消除的。为了使工件内应力消除得更彻底,在加热时应控制加热温度。一般是低温进炉,然后以100℃/h左右得加热速度加热到规定温度。焊接件得加热温度应略高于600℃。保温时间视情况而定,通常为2~4h。铸件去应力退火的保温时间取上限,冷却速度控制在(20~50)℃/h,冷至300℃以下才能出炉空冷。时效处理可分为自然时效和人工时效两种自然时效是将铸件置于露天场地半年以上,便其缓缓地发生,从而使残余应力消除或减少,人工时效是将铸件加热到550~650℃进行去应力退火,它比自然时效节省时间,残余应力去除较为彻底。

什么叫回火?  

回火是将淬火后的金属成材或零件加热到某一温度,保温一定时间后,以一定方式冷却的热处理工艺,回火是淬火后紧接着进行的一种操作,通常也是工件进行热处理的最后一道工序,因而把淬火和回火的联合工艺称为最终热处理。淬火与回火的主要目的是:

1)减少内应力和降低脆性,淬火件存在着很大的应力和脆性,如没有及时回火往往会产生变形甚至开裂。

2)调整工件的机械性能,工件淬火后,硬度高,脆性大,为了满足各种工件不同的性能要求,可以通过回火来调整,硬度,强度,塑性和韧性。

3)稳定工件尺寸。通过回火可使金相组织趋于稳定,以保证在以后的使用过程中不再发生变形。

4)改善某些合金钢的切削性能。

在生产中,常根据对工件性能的要求。按加热温度的不同,把回火分为低温回火,中温回火,和高温回火。淬火和随后的高温回火相结合的热处理工艺称为调质,即在具有高度强度的同时,又有好的塑性韧性。主要用于处理随较大载荷的机器结构零件,如机床主轴,汽车后桥半轴,强力齿轮等。
什么叫淬火?

淬火是把金属成材或零件加热到相变温度以上,保温后,以大于临界冷却速度的急剧冷却,以获得马氏体组织的热处理工艺。淬火是为了得到马氏体组织,再经回火后,使工件获得良好的使用性能,以充分发挥材料的潜力。其主要目的是:  

1)提高金属成材或零件的机械性能。例如:提高工具、轴承等的硬度和耐磨性,提高弹簧的弹性极限,提高轴类零件的综合机械性能等。  

2)改善某些特殊钢的材料性能或化学性能。如提高不锈钢的耐蚀性,增加磁钢的永磁性等。

淬火冷却时,除需合理选用淬火介质外,还要有正确的淬火方法,常用的淬火方法,主要有单液淬火,双液淬火,分级淬火、等温淬火,局部淬火等。

正火、淬火、退火、回火的区别与联系
正火有以下目的和用途。  

① 对亚共析钢,正火用以消除铸、锻、焊件的过热粗晶组织和魏氏组织,轧材中的带状组织;细化晶粒;并可作为淬火前的预先热处理。

② 对过共析钢,正火可以消除网状二次渗碳体,并使珠光体细化,不但改善机械性能,而且有利于以后的球化退火。

③ 对低碳深冲薄钢板,正火可以消除晶界的游离渗碳体,以改善其深冲性能。

④ 对低碳钢和低碳低合金钢,采用正火,可得到较多的细片状珠光体组织,使硬度增高到HB140-190,避免切削时的“粘刀”现象,改善切削加工性。对中碳钢,在既可用正火又可用退火的场合下,用正火更为经济和方便。

⑤ 对普通中碳结构钢,在力学性能要求不高的场合下,可用正火代替淬火加高温回火,不仅操作简便,而且使钢材的组织和尺寸稳定。

⑥ 高温正火(Ac3以上150~200℃)由于高温下扩散速度较高,可以减少铸件和锻件的成分偏析。高温正火后的粗大晶粒可通过随后第二次较低温度的正火予以细化。

⑦ 对某些用于汽轮机和锅炉的低、中碳合金钢,常采用正火以获得贝氏体组织,再经高温回火,用于400~550℃时具有良好的抗蠕变能力。

⑧ 除钢件和钢材以外,正火还广泛用于球墨铸铁热处理,使其获得珠光体基体,提高球墨铸铁的强度。

由于正火的特点是空气冷却,因而环境气温、堆放方式、气流及工件尺寸对正火后的组织和性能均有影响。正火组织还可作为合金钢的一种分类方法。通常根据直径为25毫米的试样加热到900℃后,空冷得到的组织,将合金钢分为珠光体钢、贝氏体钢、马氏体钢和奥氏体钢。

退火是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却的一种金属热处理工艺。退火热处理分为完全退火,不完全退火和去应力退火。退火材料的力学性能可以用拉伸试验来检测,也可以用硬度试验来检测。许多钢材都是以退火热处理状态供货的,钢材硬度检测可以采用洛氏硬度计,测试HRB硬度,对于较薄的钢板、钢带以及薄壁钢管,可以采用表面洛氏硬度计,检测HRT硬度。

退火的目的在于:

① 改善或消除钢铁在铸造、锻压、轧制和焊接过程中所造成的各种组织缺陷以及残余应力,防止工件变形、开裂。

② 软化工件以便进行切削加工。

③ 细化晶粒,改善组织以提高工件的机械性能。

④ 为最终热处理(淬火、回火)作好组织准备。
常用的退火工艺有:

① 完全退火。用以细化中、低碳钢经铸造、锻压和焊接后出现的力学性能不佳的粗大过热组织。将工件加热到铁素体全部转变为奥氏体的温度以上30~50℃,保温一段时间,然后随炉缓慢冷却,在冷却过程中奥氏体再次发生转变,即可使钢的组织变细。

② 球化退火。用以降低工具钢和轴承钢锻压后的偏高硬度。将工件加热到钢开始形成奥氏体的温度以上20~40℃,保温后缓慢冷却,在冷却过程中珠光体中的片层状渗碳体变为球状,从而降低了硬度。

③ 等温退火。用以降低某些镍、铬含量较高的合金结构钢的高硬度,以进行切削加工。一般先以较快速度冷却到奥氏体最不稳定的温度,保温适当时间,奥氏体转变为托氏体或索氏体,硬度即可降 低。  

④ 再结晶退火。用以消除金属线材、薄板在冷拔、冷轧过程中的硬化现象(硬度升高、塑性下降)。加热温度一般为钢开始形成奥氏体的温度以下50~150℃ ,只有这样才能消除加工硬化效应使金属软化。

⑤ 石墨化退火。用以使含有大量渗碳体的铸铁变成塑性良好的可锻铸铁。工艺操作是将铸件加热到950℃左右,保温一定时间后适当冷却,使渗碳体分解形成团絮状石墨。

⑥ 扩散退火。用以使合金铸件化学成分均匀化,提高其使用性能。方法是在不发生熔化的前提下,将铸件加热到尽可能高的温度,并长时间保温,待合金中各种元素扩散趋于均匀分布后缓冷。

⑦ 去应力退火。用以消除钢铁铸件和焊接件的内应力。对于钢铁制品加热后开始形成奥氏体的温度以下100~200℃,保温后在空气中冷却,即可消除内应力。




淬火,金属和玻璃的一种热处理工艺。把合金制品或玻璃加热到一定温度,随即在水、油或空气中急速冷却,一般用以提高合金的硬度和强度。通称“蘸火”。将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理。钢铁工件在淬火后具有以下特点:

① 得到了马氏体、贝氏体、残余奥氏体等不平衡(即不稳定)组织。

② 存在较大内应力。

③ 力学性能不能满足要求。因此,钢铁工件淬火后一般都要经过回火。
回火的作用在于:

① 提高组织稳定性,使工件在使用过程中不再发生组织转变,从而使工件几何尺寸和性能保持稳定。

② 消除内应力,以便改善工件的使用性能并稳定工件几何尺寸。

③ 调整钢铁的力学性能以满足使用要求。

回火之所以具有这些作用,是因为温度升高时,原子活动能力增强,钢铁中的铁、碳和其他合金元素的原子可以较快地进行扩散,实现原子的重新排列组合,从而使不稳定的不平衡组织逐步转变为稳定的平衡组织。内应力的消除还与温度升高时金属强度降低有关。一般钢铁回火时,硬度和强度下降,塑性提高。回火温度越高,这些力学性能的变化越大。有些合金元素含量较高的合金钢,在某一温度范围回火时,会析出一些颗粒细小的金属化合物,使强度和硬度上升。这种现象称为二次硬化。
回火要求:用途不同的工件应在不同温度下回火,以满足使用中的要求。

① 刀具、轴承、渗碳淬火零件、表面淬火零件通常在250℃以下进行低温回火。低温回火后硬度变化不大,内应力减小,韧性稍有提高。

② 弹簧在350~500℃下中温回火,可获得较高的弹性和必要的韧性。

③ 中碳结构钢制作的零件通常在500~600℃进行高温回火,以获得适宜的强度与韧性的良好配合。

淬火加高温回火的热处理工艺总称为调质。

钢在300℃左右回火时,常使其脆性增大,这种现象称为第一类回火脆性。一般不应在这个温度区间回火。某些中碳合金结构钢在高温回火后,如果缓慢冷至室温,也易于变脆。这种现象称为第二类回火脆性。在钢中加入钼,或回火时在油或水中冷却,都可以防止第二类回火脆性。将第二类回火脆性的钢重新加热至原来的回火温度,便可以消除这种脆性。
一.钢的退火

概念:将钢加热、保温后缓慢冷却,以获得接近平衡组织的工艺过程。

1、完全退火

工艺:加热Ac3以上30-50℃→保温→随炉冷到500度以下→空冷室温。

目的:细化晶粒,均匀组织 ,提高塑韧性,消除内应力,便于机械加工。

2、等温退火

工艺:加热Ac3以上→保温→快冷至珠光体转变温度→等温停留→转变为P→出炉空冷;

目的:同上。但时间短,易控制,脱氧、脱碳小。(适用于过冷A比较稳定的合金钢及大型碳钢件)。  

3、球化退火

概念:是使钢中的渗碳体球化的工艺过程。

对象:共析钢和过共析钢

工艺:

(1)等温球化退火加热Ac1以上20-30度→保温→迅速冷却到Ar1以下20度→等温→随炉冷至600度左右→出炉空冷。

(2)普通球化退火加热Ac1以上20-30度→保温→极缓慢冷却至600度左右→出炉空冷。(周期长,效率低,不适用)。  

目的:降低硬度、提高塑韧性,便于切削加工。

机理:使片状或网状渗碳体变成颗粒状(球状)

说明:退火加热时,组织没有完全A化,所以又称不完全退火。

4、去应力退火

工艺:加热到Ac1以下某一温度(500-650度)→保温→缓冷至室温。

目的:消除铸件、锻件、焊接件等的残余内应力,稳定工件尺寸。
二.钢的回火
工艺:将淬火后的钢重新加热到A1以下某一温度保温,然后冷却(一般空冷)至室温。

目的:消除淬火产生的内应力,稳定工件尺寸,降低脆性,改善切削加工性能。

力学性能:随着回火温度的升高,硬度、强度下降,塑性韧性升高。

1、低温回火:150-250℃ ,M回,减少内应力和脆性,提高塑韧性,有较高的硬度和耐磨性。用于制作量具、刀具和滚动轴承等。

2、中温回火:350-500℃ ,T回,具有较高的弹性,有一定的塑性和硬度。用于制作弹簧、锻模等。

3、高温回火:500-650℃ ,S回,具有良好的综合力学性能。用于制作齿轮、曲轴等。
488 浏览

热处理后继无人并非杞人忧天

智能制造类 功夫熊猫 2016-09-27 10:21 发表了文章 来自相关话题

热处理是理论性很强的科学,又是实践性很强的技术,一直位居“材料科学与工程”和“机械制造”两大前沿。《中国热处理与表层改性技术路线图》明确指出:热处理是国家核心竞争力!深刻诠释热处理在国民经济中的地位和作用。然而,现实情况并非如此。笔者大学毕业后在热处理岗位辛勤耕耘了46个春秋,先后供职于12个单位,参观访问了数百家企业,足迹遍布长城内外大江南北,对基层实情比较了解,写出多篇深受读者喜爱的实践篇。随着年龄的增高,阅历的丰富,对问题的看法也比较深刻。经过实地考查,斗胆写出“热处理后继无人并非杞人忧天”文章,不妥之处,请领导和同仁们批评指正。





早在2001年笔者就撰文“民营企业热处理现状”,反映热处理技术人员断层问题;2003年出版的首部《中国热处理年鉴》(P439~442),也载入笔者撰写的“热处理人才匮乏”的纪实文章;2011年10月在北京召开的“先进节能热处理装备和技术研讨会”,笔者在会上作了“热处理节能减排任重道远”发言(载《论文集》P1~4),又发出了“热处理后继无人”的感叹;感谢《金属加工(热加工)》在2014年第9期(P74~75)载出笔者反映热处理阴暗面的文章。上述情况从一个个侧面反映热处理既无人又无“能”。无人导致了无“能”。曾经轰轰烈烈的热处理被冷落到如此悲惨的地步,不能不算是热处理行业的悲哀。




热处理人才状况

热处理人才断层问题早已凸显,但并没有引起政府和行业部门的重视。人是企业最活跃的因素,“得人才者得天下”。从根本上讲,市场竞争本质上是人才竞争。人才竞争是企业竞争的重中之重,是企业在激烈的市场竞争中取胜的根本。笔者相信“只要有了人,什么人间奇迹都可以创造出来”的神话。目前的状况是:国有企业技术人员老化和严重流失,原有民营企业热处理技术人员十分稀少,新建民企需要大量的技术人员。由于高等教育体制的变化,几乎所有的工科院校都取消了“金属热处理”专业,新设的材料与工程专业不能保证毕业生具备足够的专业和实践技能。许多大学毕业生不愿到生产第一线,相当一部分企业因大学生在热处理呆不牢也不愿招聘,造成热处理技术人员严重缺乏。沿海城市民企从内地招聘技术熟练工或退休老工程师能解燃眉之急,但终不是长久之计。因年龄原因,“文革”前入校的大学生全部到了古稀之年,“文革”中入学的“工农兵”大学生也已基本退休,九零后毕业的热处理大学生大部分当了领导或改行,21世纪开始很少见大学生到车间来……当前热处理企业尤其缺乏既懂产品生产工艺又精通金相的热处理质量控制工程师,更缺乏从事热处理新技术新工艺研发人员。放眼脚下,展望未来,未免有失落之感。





再来看金相人员,也让人十分担忧。金相是热处理的眼睛。中国好多机电产品寿命不如外国低,并不是材料差,也不是硬度低,而往往是金相组织技不如人。随着老的金相人员的退休,各企业中现在的中坚力量大多为20世纪80年代后期毕业大中专毕业生。计划经济时代的大学毕业生属国家干部,技术人员和领导干部工资待遇差不多,工作十分稳定。金相被人们称为产品的“内科医生”,是知其所以然的学科,人的挑选也十分严格,能干上金相的还真很自豪,让别的工种人群羡慕不已。到了90年代,随着国家经济体制的改革和市场经济的出现,企业部分职能分量发生了很大的改变,重要的程度依次是营销、财会、生产、技术、最后才是质量。管理层的待遇大大高于技术质量层,同年龄同年毕业的两个人,领导者工资可能会高出工程师数倍。结果造成人人想当官,当不成官就去搞营销。技术人员则被认为是没有出息的人,而金相又属于专业性很强的那种,尽管非常重要,但金相检验历来是是非之地,是得罪人的地方。即使干得很好,也还免不了被人说三道四。因此,大多数人不会选择干金相这个行当,即使“误入岐途”也会找出种种理由离开金相这个岗位,造成金相人员一缺再缺。




很多企业由于金相人员的跳槽或退休,从工人提拔上来的年轻人顶不上来,热处理及材料质量难以控制,不得不返聘退休者。目前为了适应企业对金相检验的需求,社会上办起了各式各样的金相培训班,但是培训的都是教科书式的金相检验人员而已,不具备质量分析和追溯能力,企业的热处理质量难题还是解决不了。在机械行业,谁都知道,金相责任重大,是企业的核心竞争力,但不直接产生效益,作用隐形,定岗在辅助岗位,待遇远不如其他设计、工艺人员,甚至不如主管设备的技术人员。按照目前的情况分析,金相人才的危机还有日益加重之虞。金相技术难度高,人才的成长速度慢,一般5~6年熟练,10年才比较精通,现在如果再不抓紧对金相人才的培养,没有新鲜血液的注入补充,人才断层只会日趋加剧,势必成为制约各行各业发展的瓶颈。警钟已经敲响,金相技术同样后继乏人并非杞人忧天倾。




热处理工程师、金相员稀少,热处理炉前工更是严重短缺。招工难,难招工,热处理岗位处于前所未有的尴尬局面。除少数国有企业外,外资及民营企业热处理工人基本是农民工,他们离开土地未经任何培训,仓促上岗,即使这样,还是缺兵少将,笔者在2014年第9期《金属加工(热加工)》“给高速钢盐浴热处理泼点冷水”中揭示有些工具厂“一个人操作一套高速钢刀具生产线”的事实,一个人抢了三个人饭碗。其他如真空淬火、气碳渗碳、多用炉等亦有一人顶数人的异常情况。由于热处理是有毒、有安全隐患,加之要上夜班,现在的年轻人缺乏吃苦耐劳精神,宁可到超市去当收银员,也不愿到热处理当操作工,造成热处理操作工紧张的被动局面。




热处理人才成长困境

热处理及金相技术人员基本上毕业于“金属材料专业”,而学校的教学科研体系与工厂生产往往脱节,学生没有完整而系统的学习过金属热处理及金相知识。高校专业培养严重缺失,主要表面在以下4个方面。





(1)大学专业越来越宽泛,针对性削弱了

以前的工科院校基本上都设有金属热处理专业,尤其是名牌大学如上海交大、浙江大学、哈工大、西安交大、北京钢院、陕机院等为国家培养了大量的热处理精英。20世纪60年代,确实有“金属热处理”专业,而90年代前后,随着科学技术的飞速发展,专业作了相应调整,成了“金属材料及热处理专业”。到了1996年“金属材料及热处理专业”全面停止招生,进入“机械设计与制造”或“材料科学与工程”学科。有的高校原设有“金属材料与热处理专业”演变成“热处理”、“锻造”、“铸造”、“焊接”热加工的大杂烩。大约在2004年将“金属材料及热处理”、“无机非金属材料”、“高分子材料”和“表面工程”合并成“材料科学与工程专业”。金属热处理成了摆设、附属物,逐步被边缘化、冷淡化。




(2)课程内容简单,难度大大降低

主要课程《金属学》、《合金钢》、《有色金属》合并为《金属材料》课程;《热处理原理》、《热处理工艺》合并为《金属热处理》课程。




(3)理论性高了,应用性低了

几乎所有的教师都在申报国家项目、争取科研基金、做前沿研究,纯粹的理论研究,发表高水平的论文跟实际生产脱节。老师学历结构从博士、博士后,到海归博士、博士后,学历越来越高。大部分教授都有国外深造的经历,有实践经验的工程师、高工教师十分稀缺。教学内容严重偏向,培养的学生无法适应企业生产的需要。




(4)教学实践环节弱了

现在大多数企业愿意接纳职业技术学院、职业中专甚至技工学校毕业的学生,而不愿意要高校生,原因是怕影响生产,怕出安全事故,不愿意接收大学生实习,即便学生到了车间,只动嘴不动手,走马观花,远远地看着工人生产,无法深入生产班组、与工人同吃同住同劳动,教师也无法针对具体生产工艺作深入细致讲解,老师模糊,学生糊涂,实习走过场。




专业图书的缺失也是影响人才成长的一个因素。现在的图书市场缺少一册工作必备、案头留置、随身携带、简单易行、具有鲜明指导性热处理手册。当前十几家出版社都出版热处理丛书,内容大同小异,金相专著本来就不多,太科普的往往涉及面很窄、内容较肤浅,不能指导生产,专著又过于艰深庞杂。就钢铁材料而言,国内外的牌号就有两、三万种,不同成分出现不同的相,不同的热加工方式又有不同的相,同一成分同规格的钢材不同的热处理工艺亦会出现不同的相。对初学者来说,翻开钢铁图谱,洋洋数千页,云山雾海,头都大了,用图谱再和实际金相形貌对照,经常就靠上谱。因此,缺乏能够给初学者马上上手,边学边干的实用指导丛书。




企业的生存环境也是影响人才成长的重要因素。人生不能没有钱,但人不是为钱而活着,没有钱活得不潇洒,特别是人到中年,上有老下有小,他们需要努力拼搏养家糊口,该得到的得不到是很闹心的事。民营企业热处理基本上是农民兄弟,不少企业不给他们缴“五大保险”,一个月难得有一两天休息,超时工作是常事,得不到应有的回报,说的难听点是剥削工人的剩余价值,很不得人心,热处理是有害工种没有保健营养费,夏天没有高温费,节假日加班没有X倍工资,此举很不得人心。




大部分企业对热处理、金相人才只使用不培养,或对热处理工作的重要性认识不足,热处理既然是国家核心竞争力,就不应该摆在旁心的位置,再则,国家一系列的政策法规跟不上,使人心灰意冷,使热处理人才危机加剧。




对企业的建议

作为一个企业要想在剧烈而残酷的市场竞争中求得生存和发展,使自己的产品质量过硬,必须稳定和提高热处理人员素责,有几个问题应努力抓好。





(1)选好材

人是生产力最活跃的因素,同样也是不确定因素。名牌都是人创造出来的,坏的事同样亦人而为。总结历史,不是所有的人都适合金相热处理的。只有严谨、思辩能力极强、耐得住性的人、有良知和责任感的无所畏惧的人才有可能成长为高层次人才;第二现在社会上诱惑太多,能够快速出名、赚大钱的机会越来越多,而热处理行业太苦,经难念、门难进、脸难看,默默潜心10年、20年甚至30年,没有鲜花掌声。因而必须有为热处理献身精神,对工作有乐趣。金相热处理本身就是一项很有创意的工作,显微镜下是一个极其奥妙的微观世界,天天都有新花样,欣尝着五彩缤纷的金相世界,真是其乐无穷。第三是金相热处理一直工作在质量争议的风口浪尖上,一定要实事求是,不是热处理过失绝不能强套,做到任何评判都有依据。因此,企业应该为热处理技术人才的成长营造一个良好的工作、学习、深造良性循环的发展之路、不要选了材而不育才。




(2)事业留人

注意精神鼓励,对热处理人才工作中的成绩,要给予表扬和认可,注意给人以成才、发展、晋升的机会。国内的行业会议、专业论坛尽量让其参加,把他们当成企业的主人,而不是赚钱的机器。




(3)待遇留人

建立评价、激励和培训体系。企业要把眼光放远一点,重视长期的发展和利益,要从人才战略的高度,打造百年企业创世界品牌的设想,建立一系列的激励机制,少给一些大棒,多给一点胡萝卜,福利待遇上倾斜,该给的一点也不能少,可给可不给的企业量力而行,有发明创造、对企业作出重大贡献者一定要重奖。此外,让技术人员多参加一些热处理行业会议、学术会议,创造出国考察、参观学习的机会,让他们不断提高、完善自我,为企业节能增效。如果真为工程技术人员创造这么良好的工作学习环境,谁还想离开!




“热处理是国家核心竞争力”要贯彻落实难度很大,由于长期“重冷轻热”,造成热处理逐步被边缘化、附属化、配角化。金相热处理行业的兴衰直接关系到企业的生存,也关系到国防、国家财产和人民生命安全。高层次的技术人才的成长并不是高等教育一家就能独立完成的,也不是短期培训能够解决的,而是一个漫长的系统工程,需要社会、企业、高校长期共同关注,以及个人的奋发努力才能完成。热处理行业一旦一蹶不振,则冶金、机械、军械势必少了强大的质量支撑和保障,不是短时间可以恢复了,需要在基层拍摸滚打数年才能成才。笔者在工厂几十年,亲眼看到一个个同仁退休或改行,新人又接不上来,而热处理质量问题反复发作又得不到彻底解决才发出“热处理后继无人并非杞人忧天”的感叹。
 
 
 
来源:网络 查看全部
热处理是理论性很强的科学,又是实践性很强的技术,一直位居“材料科学与工程”和“机械制造”两大前沿。《中国热处理与表层改性技术路线图》明确指出:热处理是国家核心竞争力!深刻诠释热处理在国民经济中的地位和作用。然而,现实情况并非如此。笔者大学毕业后在热处理岗位辛勤耕耘了46个春秋,先后供职于12个单位,参观访问了数百家企业,足迹遍布长城内外大江南北,对基层实情比较了解,写出多篇深受读者喜爱的实践篇。随着年龄的增高,阅历的丰富,对问题的看法也比较深刻。经过实地考查,斗胆写出“热处理后继无人并非杞人忧天”文章,不妥之处,请领导和同仁们批评指正。





早在2001年笔者就撰文“民营企业热处理现状”,反映热处理技术人员断层问题;2003年出版的首部《中国热处理年鉴》(P439~442),也载入笔者撰写的“热处理人才匮乏”的纪实文章;2011年10月在北京召开的“先进节能热处理装备和技术研讨会”,笔者在会上作了“热处理节能减排任重道远”发言(载《论文集》P1~4),又发出了“热处理后继无人”的感叹;感谢《金属加工(热加工)》在2014年第9期(P74~75)载出笔者反映热处理阴暗面的文章。上述情况从一个个侧面反映热处理既无人又无“能”。无人导致了无“能”。曾经轰轰烈烈的热处理被冷落到如此悲惨的地步,不能不算是热处理行业的悲哀。




热处理人才状况

热处理人才断层问题早已凸显,但并没有引起政府和行业部门的重视。人是企业最活跃的因素,“得人才者得天下”。从根本上讲,市场竞争本质上是人才竞争。人才竞争是企业竞争的重中之重,是企业在激烈的市场竞争中取胜的根本。笔者相信“只要有了人,什么人间奇迹都可以创造出来”的神话。目前的状况是:国有企业技术人员老化和严重流失,原有民营企业热处理技术人员十分稀少,新建民企需要大量的技术人员。由于高等教育体制的变化,几乎所有的工科院校都取消了“金属热处理”专业,新设的材料与工程专业不能保证毕业生具备足够的专业和实践技能。许多大学毕业生不愿到生产第一线,相当一部分企业因大学生在热处理呆不牢也不愿招聘,造成热处理技术人员严重缺乏。沿海城市民企从内地招聘技术熟练工或退休老工程师能解燃眉之急,但终不是长久之计。因年龄原因,“文革”前入校的大学生全部到了古稀之年,“文革”中入学的“工农兵”大学生也已基本退休,九零后毕业的热处理大学生大部分当了领导或改行,21世纪开始很少见大学生到车间来……当前热处理企业尤其缺乏既懂产品生产工艺又精通金相的热处理质量控制工程师,更缺乏从事热处理新技术新工艺研发人员。放眼脚下,展望未来,未免有失落之感。





再来看金相人员,也让人十分担忧。金相是热处理的眼睛。中国好多机电产品寿命不如外国低,并不是材料差,也不是硬度低,而往往是金相组织技不如人。随着老的金相人员的退休,各企业中现在的中坚力量大多为20世纪80年代后期毕业大中专毕业生。计划经济时代的大学毕业生属国家干部,技术人员和领导干部工资待遇差不多,工作十分稳定。金相被人们称为产品的“内科医生”,是知其所以然的学科,人的挑选也十分严格,能干上金相的还真很自豪,让别的工种人群羡慕不已。到了90年代,随着国家经济体制的改革和市场经济的出现,企业部分职能分量发生了很大的改变,重要的程度依次是营销、财会、生产、技术、最后才是质量。管理层的待遇大大高于技术质量层,同年龄同年毕业的两个人,领导者工资可能会高出工程师数倍。结果造成人人想当官,当不成官就去搞营销。技术人员则被认为是没有出息的人,而金相又属于专业性很强的那种,尽管非常重要,但金相检验历来是是非之地,是得罪人的地方。即使干得很好,也还免不了被人说三道四。因此,大多数人不会选择干金相这个行当,即使“误入岐途”也会找出种种理由离开金相这个岗位,造成金相人员一缺再缺。




很多企业由于金相人员的跳槽或退休,从工人提拔上来的年轻人顶不上来,热处理及材料质量难以控制,不得不返聘退休者。目前为了适应企业对金相检验的需求,社会上办起了各式各样的金相培训班,但是培训的都是教科书式的金相检验人员而已,不具备质量分析和追溯能力,企业的热处理质量难题还是解决不了。在机械行业,谁都知道,金相责任重大,是企业的核心竞争力,但不直接产生效益,作用隐形,定岗在辅助岗位,待遇远不如其他设计、工艺人员,甚至不如主管设备的技术人员。按照目前的情况分析,金相人才的危机还有日益加重之虞。金相技术难度高,人才的成长速度慢,一般5~6年熟练,10年才比较精通,现在如果再不抓紧对金相人才的培养,没有新鲜血液的注入补充,人才断层只会日趋加剧,势必成为制约各行各业发展的瓶颈。警钟已经敲响,金相技术同样后继乏人并非杞人忧天倾。




热处理工程师、金相员稀少,热处理炉前工更是严重短缺。招工难,难招工,热处理岗位处于前所未有的尴尬局面。除少数国有企业外,外资及民营企业热处理工人基本是农民工,他们离开土地未经任何培训,仓促上岗,即使这样,还是缺兵少将,笔者在2014年第9期《金属加工(热加工)》“给高速钢盐浴热处理泼点冷水”中揭示有些工具厂“一个人操作一套高速钢刀具生产线”的事实,一个人抢了三个人饭碗。其他如真空淬火、气碳渗碳、多用炉等亦有一人顶数人的异常情况。由于热处理是有毒、有安全隐患,加之要上夜班,现在的年轻人缺乏吃苦耐劳精神,宁可到超市去当收银员,也不愿到热处理当操作工,造成热处理操作工紧张的被动局面。




热处理人才成长困境

热处理及金相技术人员基本上毕业于“金属材料专业”,而学校的教学科研体系与工厂生产往往脱节,学生没有完整而系统的学习过金属热处理及金相知识。高校专业培养严重缺失,主要表面在以下4个方面。





(1)大学专业越来越宽泛,针对性削弱了

以前的工科院校基本上都设有金属热处理专业,尤其是名牌大学如上海交大、浙江大学、哈工大、西安交大、北京钢院、陕机院等为国家培养了大量的热处理精英。20世纪60年代,确实有“金属热处理”专业,而90年代前后,随着科学技术的飞速发展,专业作了相应调整,成了“金属材料及热处理专业”。到了1996年“金属材料及热处理专业”全面停止招生,进入“机械设计与制造”或“材料科学与工程”学科。有的高校原设有“金属材料与热处理专业”演变成“热处理”、“锻造”、“铸造”、“焊接”热加工的大杂烩。大约在2004年将“金属材料及热处理”、“无机非金属材料”、“高分子材料”和“表面工程”合并成“材料科学与工程专业”。金属热处理成了摆设、附属物,逐步被边缘化、冷淡化。




(2)课程内容简单,难度大大降低

主要课程《金属学》、《合金钢》、《有色金属》合并为《金属材料》课程;《热处理原理》、《热处理工艺》合并为《金属热处理》课程。




(3)理论性高了,应用性低了

几乎所有的教师都在申报国家项目、争取科研基金、做前沿研究,纯粹的理论研究,发表高水平的论文跟实际生产脱节。老师学历结构从博士、博士后,到海归博士、博士后,学历越来越高。大部分教授都有国外深造的经历,有实践经验的工程师、高工教师十分稀缺。教学内容严重偏向,培养的学生无法适应企业生产的需要。




(4)教学实践环节弱了

现在大多数企业愿意接纳职业技术学院、职业中专甚至技工学校毕业的学生,而不愿意要高校生,原因是怕影响生产,怕出安全事故,不愿意接收大学生实习,即便学生到了车间,只动嘴不动手,走马观花,远远地看着工人生产,无法深入生产班组、与工人同吃同住同劳动,教师也无法针对具体生产工艺作深入细致讲解,老师模糊,学生糊涂,实习走过场。




专业图书的缺失也是影响人才成长的一个因素。现在的图书市场缺少一册工作必备、案头留置、随身携带、简单易行、具有鲜明指导性热处理手册。当前十几家出版社都出版热处理丛书,内容大同小异,金相专著本来就不多,太科普的往往涉及面很窄、内容较肤浅,不能指导生产,专著又过于艰深庞杂。就钢铁材料而言,国内外的牌号就有两、三万种,不同成分出现不同的相,不同的热加工方式又有不同的相,同一成分同规格的钢材不同的热处理工艺亦会出现不同的相。对初学者来说,翻开钢铁图谱,洋洋数千页,云山雾海,头都大了,用图谱再和实际金相形貌对照,经常就靠上谱。因此,缺乏能够给初学者马上上手,边学边干的实用指导丛书。




企业的生存环境也是影响人才成长的重要因素。人生不能没有钱,但人不是为钱而活着,没有钱活得不潇洒,特别是人到中年,上有老下有小,他们需要努力拼搏养家糊口,该得到的得不到是很闹心的事。民营企业热处理基本上是农民兄弟,不少企业不给他们缴“五大保险”,一个月难得有一两天休息,超时工作是常事,得不到应有的回报,说的难听点是剥削工人的剩余价值,很不得人心,热处理是有害工种没有保健营养费,夏天没有高温费,节假日加班没有X倍工资,此举很不得人心。




大部分企业对热处理、金相人才只使用不培养,或对热处理工作的重要性认识不足,热处理既然是国家核心竞争力,就不应该摆在旁心的位置,再则,国家一系列的政策法规跟不上,使人心灰意冷,使热处理人才危机加剧。




对企业的建议

作为一个企业要想在剧烈而残酷的市场竞争中求得生存和发展,使自己的产品质量过硬,必须稳定和提高热处理人员素责,有几个问题应努力抓好。





(1)选好材

人是生产力最活跃的因素,同样也是不确定因素。名牌都是人创造出来的,坏的事同样亦人而为。总结历史,不是所有的人都适合金相热处理的。只有严谨、思辩能力极强、耐得住性的人、有良知和责任感的无所畏惧的人才有可能成长为高层次人才;第二现在社会上诱惑太多,能够快速出名、赚大钱的机会越来越多,而热处理行业太苦,经难念、门难进、脸难看,默默潜心10年、20年甚至30年,没有鲜花掌声。因而必须有为热处理献身精神,对工作有乐趣。金相热处理本身就是一项很有创意的工作,显微镜下是一个极其奥妙的微观世界,天天都有新花样,欣尝着五彩缤纷的金相世界,真是其乐无穷。第三是金相热处理一直工作在质量争议的风口浪尖上,一定要实事求是,不是热处理过失绝不能强套,做到任何评判都有依据。因此,企业应该为热处理技术人才的成长营造一个良好的工作、学习、深造良性循环的发展之路、不要选了材而不育才。




(2)事业留人

注意精神鼓励,对热处理人才工作中的成绩,要给予表扬和认可,注意给人以成才、发展、晋升的机会。国内的行业会议、专业论坛尽量让其参加,把他们当成企业的主人,而不是赚钱的机器。




(3)待遇留人

建立评价、激励和培训体系。企业要把眼光放远一点,重视长期的发展和利益,要从人才战略的高度,打造百年企业创世界品牌的设想,建立一系列的激励机制,少给一些大棒,多给一点胡萝卜,福利待遇上倾斜,该给的一点也不能少,可给可不给的企业量力而行,有发明创造、对企业作出重大贡献者一定要重奖。此外,让技术人员多参加一些热处理行业会议、学术会议,创造出国考察、参观学习的机会,让他们不断提高、完善自我,为企业节能增效。如果真为工程技术人员创造这么良好的工作学习环境,谁还想离开!




“热处理是国家核心竞争力”要贯彻落实难度很大,由于长期“重冷轻热”,造成热处理逐步被边缘化、附属化、配角化。金相热处理行业的兴衰直接关系到企业的生存,也关系到国防、国家财产和人民生命安全。高层次的技术人才的成长并不是高等教育一家就能独立完成的,也不是短期培训能够解决的,而是一个漫长的系统工程,需要社会、企业、高校长期共同关注,以及个人的奋发努力才能完成。热处理行业一旦一蹶不振,则冶金、机械、军械势必少了强大的质量支撑和保障,不是短时间可以恢复了,需要在基层拍摸滚打数年才能成才。笔者在工厂几十年,亲眼看到一个个同仁退休或改行,新人又接不上来,而热处理质量问题反复发作又得不到彻底解决才发出“热处理后继无人并非杞人忧天”的感叹。
 
 
 
来源:网络
502 浏览

11个热处理工艺节能大举措,

设备硬件类 凯凯 2016-05-05 10:19 发表了文章 来自相关话题

11个热处理工艺节能大举措,省钱就是提升竞争力!
 
1.降低加热温度
一般亚共析碳钢的淬火加热温度在AC3以上30~50℃,共析及过共析碳钢淬火加热温度为AC1以上30~50℃。但近年来的研究证实,亚共析钢在略低于Ac3的α+γ两相区内加热淬火(即亚温淬火)可提高钢的强韧性,降低脆性转变温度,并可消除回火脆性。淬火的加热温度可降低40℃。

对高碳钢采用低温快速短时加热淬火,可减少奥氏体碳含量,有利于获得良好强韧配合的板条马氏体,不仅可提高其韧度,而且还缩短了加热时间。

对于某些传动齿轮,以碳氮共渗代替渗碳,耐磨性提高40%~60%,疲劳强度提高50%~80%,共渗时间相当,但共渗温度(850℃)较渗碳温度(920℃)低70℃,同时还可减小热处理变形。

2.缩短加热时间

生产实践表明,依工件的有效厚度而确定的传统加热时间偏于保守,因此要对加热保温时间公式τ=α·K·D中的加热系数α进行修正。按传统处理工艺参数,在空气炉中加热到800~900℃时,α值推荐为1.0~1.8min/mm,这显然是保守的。如果能将α值减小,则可大大缩短加热时间。加热时间应根据钢种工件尺寸、装炉量等情况通过实验确定,经优化后的工艺参数一旦确定后要认真执行,才能取得显著经济效益。

3.取消回火或减少回火次数

取消渗碳钢的回火,如20Cr钢装载机用双面渗碳活塞销取消回火的疲劳极限较回火的可提高16%;取消低碳马氏体钢的回火,将推土机销轴套简化为20钢淬火态(低碳马氏体)使用,硬度稳定在45HRC左右,产品强度和耐磨性显著提高,质量稳定;高速钢减少回火次数,如W18Cr4V钢机用锯条采用一次回火(560℃×1h)代替传统的560℃×1h三次回火,使用寿命提高40%。

4.用低中温回火代替高温回火

中碳或中碳合金结构钢用中、低温回火代替高温回火,可获得更高的多冲抗力。W6Mo5Cr4V2钢制Φ8mm钻头,在淬火后进行350℃×1h+560℃×1h二次回火,较560℃×1h三次回火的钻头切削寿命提高40。

5.合理减少渗层深度

化学热处理周期长,耗电大,如能减少渗层深度以缩短时间是节能的重要手段。用应力测定求出必要的硬化层深度,表明目前的硬化层过深,只需传统硬化层深度的70%就足够。研究表明,碳氮共渗比渗碳可减少层深30%~40%。同时若在实际生产中将渗层深度控制在其技术要求的下限,也可节能 20%,同时还缩短了时间,减小了变形。


6.采用高温和真空化学热处理

高温化学热处理就是在设备使用温度允许及所渗钢种奥氏体晶粒不长大条件狭,提高化学热处理温度,从而大大加速渗碳的速度。把渗碳温度从930℃提高到1000℃,可使渗碳速度提高2倍以上。但由于还存在许多问题,今后的发展有限。

真空化学热处理是在负压的气相介质中进行。由于在真空状态下工件表面净化,以及采用较高的温度,因而大大提高了渗速。如真空渗碳可提高生产率1~2倍;在133.3×(10-1~10-2)Pa下渗铝、铬,渗速可提高10倍以上。

7.离子化学热处理

它是一种在低于一个大气压的含有欲渗元素的气相介质中,利用工件(阴极)和阳极之间产生辉光放电同时渗入欲渗元素的化学热处理工艺。如离子渗氮、离子渗碳、离子渗硫等,具有渗速快、质量好、节能等优点。


8.采用感应自行回火

采用感应自行回火代替炉中回火,由于是利用感应加热将热量传到淬火层以外,淬火冷却时未全部带走残留下来的热量而实现短时间回火,因而具有高效节能,并在许多情况下(如对高碳钢及高碳高合金钢)可避免淬火开裂,同时一经确定各工艺参数可大批量生产等优点,经济效益显著。

9.利用锻后预热淬火

锻后预热淬火不仅可以降低热处理能耗,简化生产过程,而且能使产品性能有所改善。

采用锻后余热淬火+高温回火作为预处理,可以消除锻后余热淬火作为最终热处理时晶粒粗大、冲击韧度差的缺点,比球化退火或一般退火的时间短、生产率高,加上高温回火的温度低于退火和政活,所以能大大降低能耗,而且设备简单,操作容易。

锻后余热正火与一般正火相比,不仅可提高钢的强度,而且可提高塑韧性,降低冷脆转变温度和缺口敏感性,如20i钢锻后在730~630℃以20℃/h的冷速冷却,取得了良好的效果。


10.以表面淬火代替渗碳淬火

对含碳量在0.6%~0.8%的中高碳钢经高频淬火后的性能(如静强度、疲劳强度、多次冲击抗力、残余内应力)的系统研究表明,用感应淬火部分代替渗碳淬火是完全可能的。我们用40Cr钢高频淬火制造变速箱齿轮,代替原20i钢渗碳淬火齿轮取得了成功。


11.以局部加热代替整体加热

对一些局部又技术要求的零件(如耐磨的齿轴径、轧辊辊径等),可采用浴炉加热、感应加热、脉冲加热、火焰加热等局部加热方式代替如箱式炉等的整体加热,可以实现各零件摩擦咬合部位之间的适当配合,提高零件使用寿命,又因为是局部加热,所以能显著减小淬火变形,降低能耗。


我们深深体会到,一个企业能够合理地利用能源,用有限的能源取得最大的经济效益,涉及到用能设备效率的高低,工艺技术路线是否合理,管理是否科学等因素。这就要求我们用系统的观点综合考虑,每一个环节都不能忽视,同时,要求在制定工艺时,也要有全局的观念,要和企业的经济效益紧密结合,不能为了制定工艺而制定工艺,在市场经济高速发展的今天,这一点尤为重要。
 
 
www.imefuture.com
  查看全部
11个热处理工艺节能大举措,省钱就是提升竞争力!
 
1.降低加热温度
一般亚共析碳钢的淬火加热温度在AC3以上30~50℃,共析及过共析碳钢淬火加热温度为AC1以上30~50℃。但近年来的研究证实,亚共析钢在略低于Ac3的α+γ两相区内加热淬火(即亚温淬火)可提高钢的强韧性,降低脆性转变温度,并可消除回火脆性。淬火的加热温度可降低40℃。

对高碳钢采用低温快速短时加热淬火,可减少奥氏体碳含量,有利于获得良好强韧配合的板条马氏体,不仅可提高其韧度,而且还缩短了加热时间。

对于某些传动齿轮,以碳氮共渗代替渗碳,耐磨性提高40%~60%,疲劳强度提高50%~80%,共渗时间相当,但共渗温度(850℃)较渗碳温度(920℃)低70℃,同时还可减小热处理变形。

2.缩短加热时间

生产实践表明,依工件的有效厚度而确定的传统加热时间偏于保守,因此要对加热保温时间公式τ=α·K·D中的加热系数α进行修正。按传统处理工艺参数,在空气炉中加热到800~900℃时,α值推荐为1.0~1.8min/mm,这显然是保守的。如果能将α值减小,则可大大缩短加热时间。加热时间应根据钢种工件尺寸、装炉量等情况通过实验确定,经优化后的工艺参数一旦确定后要认真执行,才能取得显著经济效益。

3.取消回火或减少回火次数

取消渗碳钢的回火,如20Cr钢装载机用双面渗碳活塞销取消回火的疲劳极限较回火的可提高16%;取消低碳马氏体钢的回火,将推土机销轴套简化为20钢淬火态(低碳马氏体)使用,硬度稳定在45HRC左右,产品强度和耐磨性显著提高,质量稳定;高速钢减少回火次数,如W18Cr4V钢机用锯条采用一次回火(560℃×1h)代替传统的560℃×1h三次回火,使用寿命提高40%。

4.用低中温回火代替高温回火

中碳或中碳合金结构钢用中、低温回火代替高温回火,可获得更高的多冲抗力。W6Mo5Cr4V2钢制Φ8mm钻头,在淬火后进行350℃×1h+560℃×1h二次回火,较560℃×1h三次回火的钻头切削寿命提高40。

5.合理减少渗层深度

化学热处理周期长,耗电大,如能减少渗层深度以缩短时间是节能的重要手段。用应力测定求出必要的硬化层深度,表明目前的硬化层过深,只需传统硬化层深度的70%就足够。研究表明,碳氮共渗比渗碳可减少层深30%~40%。同时若在实际生产中将渗层深度控制在其技术要求的下限,也可节能 20%,同时还缩短了时间,减小了变形。


6.采用高温和真空化学热处理

高温化学热处理就是在设备使用温度允许及所渗钢种奥氏体晶粒不长大条件狭,提高化学热处理温度,从而大大加速渗碳的速度。把渗碳温度从930℃提高到1000℃,可使渗碳速度提高2倍以上。但由于还存在许多问题,今后的发展有限。

真空化学热处理是在负压的气相介质中进行。由于在真空状态下工件表面净化,以及采用较高的温度,因而大大提高了渗速。如真空渗碳可提高生产率1~2倍;在133.3×(10-1~10-2)Pa下渗铝、铬,渗速可提高10倍以上。

7.离子化学热处理

它是一种在低于一个大气压的含有欲渗元素的气相介质中,利用工件(阴极)和阳极之间产生辉光放电同时渗入欲渗元素的化学热处理工艺。如离子渗氮、离子渗碳、离子渗硫等,具有渗速快、质量好、节能等优点。


8.采用感应自行回火

采用感应自行回火代替炉中回火,由于是利用感应加热将热量传到淬火层以外,淬火冷却时未全部带走残留下来的热量而实现短时间回火,因而具有高效节能,并在许多情况下(如对高碳钢及高碳高合金钢)可避免淬火开裂,同时一经确定各工艺参数可大批量生产等优点,经济效益显著。

9.利用锻后预热淬火

锻后预热淬火不仅可以降低热处理能耗,简化生产过程,而且能使产品性能有所改善。

采用锻后余热淬火+高温回火作为预处理,可以消除锻后余热淬火作为最终热处理时晶粒粗大、冲击韧度差的缺点,比球化退火或一般退火的时间短、生产率高,加上高温回火的温度低于退火和政活,所以能大大降低能耗,而且设备简单,操作容易。

锻后余热正火与一般正火相比,不仅可提高钢的强度,而且可提高塑韧性,降低冷脆转变温度和缺口敏感性,如20i钢锻后在730~630℃以20℃/h的冷速冷却,取得了良好的效果。


10.以表面淬火代替渗碳淬火

对含碳量在0.6%~0.8%的中高碳钢经高频淬火后的性能(如静强度、疲劳强度、多次冲击抗力、残余内应力)的系统研究表明,用感应淬火部分代替渗碳淬火是完全可能的。我们用40Cr钢高频淬火制造变速箱齿轮,代替原20i钢渗碳淬火齿轮取得了成功。


11.以局部加热代替整体加热

对一些局部又技术要求的零件(如耐磨的齿轴径、轧辊辊径等),可采用浴炉加热、感应加热、脉冲加热、火焰加热等局部加热方式代替如箱式炉等的整体加热,可以实现各零件摩擦咬合部位之间的适当配合,提高零件使用寿命,又因为是局部加热,所以能显著减小淬火变形,降低能耗。


我们深深体会到,一个企业能够合理地利用能源,用有限的能源取得最大的经济效益,涉及到用能设备效率的高低,工艺技术路线是否合理,管理是否科学等因素。这就要求我们用系统的观点综合考虑,每一个环节都不能忽视,同时,要求在制定工艺时,也要有全局的观念,要和企业的经济效益紧密结合,不能为了制定工艺而制定工艺,在市场经济高速发展的今天,这一点尤为重要。
 
 
www.imefuture.com
 
635 浏览

提高模具使用寿命的实用方法

设备硬件类 阿飞 2016-05-04 14:24 发表了文章 来自相关话题

提高模具使用寿命的实用方法
 

1 合理选用模具材料

1.1模具材料的选用

选用模具材料时,应根据不同的生产批量、工艺方法和加工对象进行选择。
 
在大批量生产中,应选用长寿命的模具材料,如硬质合金,高强韧、高耐磨模具钢(如YG15、YG20);对小批量或新产品试制可采用锌合金、铋锡合金等模具材料;对于易变形、易断裂失效的通用模具,需要选用高强度、高韧性的材料(T10A);热锻模则要选用具有良好的韧性、强度、耐模性和抗冷热疲劳性能的材料(如5CrM-nMo);压铸模要采用热疲劳抗力高、高温强度高的合金钢(如3Cr2W8V);塑料模具则应选择易切削、组织致密、抛光性能好的材料。
 
此外,在设计凸模和凹模时,宜选用不同硬度或不同材料的模具相匹配,如:凸模用工具钢(如T10A),凹模用高碳高铬钢(如Cr12、Cr12MoV),模具使用寿命可提高5~6倍。

[login]

1.2合理的模具结构

模具设计的原则是保证足够的强度、刚度、同心度、对中性和合理的冲裁间隙,并减少应力集中,以保证由模具生产出来零件符合设计要求。因此对模具的主要工作零作(如冲模的凸、凹模,注塑模的动、定模,模锻模的上、下模等)要求其导向精度高、同心度和中性好及冲裁的间隙合理。


在进行模具设计时,应着重考虑的是:

① 设计凸模时必须注意导向支撑和对中保护。特别是设计小孔凸模时采用自身导向结构,可延长模具寿命。
② 对夹角、窄槽等薄弱部位,为了减少应力集中,要以圆弧过渡,圆弧半径R可取3~5mm。
③ 对于结构复杂的凹模采用镶拼结构,也可减少应力集中。
④ 合理增大间隙,改善凸模工作部分的受力状态,使冲裁力、卸件力和推件力下降,凸、凹模刃口磨损减少。


2 模具的热处理工艺

从模具失效分析得知,45%的模具失效是由于热处理不当造成的。众所周知,磨损、粘结均发生在表面,疲劳、断裂也往往从表面开始,因此对模具表面的加工质量要求非常高。但实际上由于加工痕迹的存在,热处理时表面氧化脱碳也在所难免。因此,模具的表面性能反而比基体差。采用热处理新技术是提高模具性能的经济而有效的重要措施。模具热处理工艺包括基体强韧化和表面强化处理。基体的强韧化在于提高基体的强度和韧度,减少断裂和变形。表面强化的主要目的的是提高模具表面的耐磨性、耐蚀性和润滑性能。



2.1 模具的整体强韧化工艺

模具既要具有优良的整体强韧化性能,又要具有优异的型腔表面性能,这样才能提高模具使用寿命,为了达到这个要求,出现了在对模具整体强韧化的基础上再进行表面强化的各种处理工艺:对普通冷作模具钢,采用低温淬火与低温回火处理,可收到增加韧性、减少脆性和折断的良好效果;对热作模具钢,采用高温淬火与高温回火处理,可显著提高热作模具钢的强韧性和热稳定性。例如,对于3Cr2W8V材料制成的压铸模,采用400℃~500℃及800℃~850℃的俩次预先正火而后进行高温淬火、回火处理,可提高韧性40%,模具寿命可提高1倍。

除此之外,还可采用形变热处理。变形热处理是把钢的强化与相变强化结合起来的一种强韧化工艺。形变热处理的强韧化本质在于获得细小的奥氏体晶粒、细化马氏体增加了马氏体中的位错密度并形成胞状亚结构,同时促进碳化物的弥散硬化作用。



2.2模具的表面强化热处理

模具表面强化处理工艺主要有气体氮化法、离子氮化法、点火花表面强化法、渗硼、TD法、CVD法、PVD法、激光表面强化法、离子注入法、等离子喷涂法等等。

① 气体软氮化:使氮在氮化温度分解后产生活性氮原子,被金属表面吸收渗入钢中并且不断自表面向内扩散,形成氮化层。模具经氮化处理后,表面硬度可达HV950~1200,使模具具有很高的红硬度和高的疲劳强度,并提高模具表面光洁的度和抗咬合能力。

② 离子氮化:将待处理的模具放在真空容器中,充以一定压力的含氮气体(如氮或氮、氢混合气),然后以被处理模具作阴极,以真空容器的罩壁作阳极,在阴阳极之间加400~600伏的直流电压,阴阳极间便产生辉光放电,容器里的气体被电离,在空间产生大量的电子与离子。在电场的作用下,正离子冲向阴极,以很高速度轰击模具表面,将模具加热。离能正离子冲入模具表面,获得电子,变成氮原子被模具表面吸收,并向内扩散形成氮化层。应用离子氮化法可提高模具的耐磨性和疲劳强度。

③ 点火化表面强化:这是一种直接利用电能的高能量密度对模具表面进行强化处理的工艺。它是通过火花放电的作用,把作为电极的导电材料溶渗进金属工件表层,从而形成合金化的表面强化层,使工作表面的物理、化学性能和机械性能得到改善。例如采用WC、TiC等硬质合金电极材料强化高速钢或合金工具钢表面,可形成显微硬度HV1100以上的耐磨、耐蚀和具有红硬性的强化层,使模具的使用寿命明显得到提高。点火花表面强化的优点是设备简单、操作方便,处理后的模具耐磨性提高显著;缺点是强化表面较粗糙,强化层厚度较薄,强化处理的效率低。

④ 渗硼:由于渗硼层具有良好的红硬性、耐磨性,通过渗硼能显著提高模具表面硬度(达到HV1300~2000)和耐磨性,可广泛用于模具表面强化,尤其适用于处理在磨粒磨损条件下的模具。但渗硼层往往存着较大的脆性,这也限制了它的应用。

⑤ TD热处理:在空气炉或盐槽中放入一个耐热钢制的坩埚,将硼砂放入坩埚加热熔化至800℃~1200℃,然后加入相应的碳化物形成粉末(如钛、钡、铌、铬),再将钢或硬质合金工件放入坩埚中浸渍保温1~2小时,加入元素将扩散至工件表面并与钢中的碳发生反应形成碳化物层,所得到的碳化物层具有很高的硬度和耐磨性。

⑥ CVD法(化学气相沉积):将模具放在氢气(或其它保护气体)中加热至900℃~1200℃后,以其为载气,把低温气化挥发金属的化合物气体如四氯化钛(TiCI4)和甲苯CH4(或其它碳氢化合物)蒸气带入炉中,使TiCI4中的钛和碳氢化合物中的碳(以及钢表面的碳分)在模具表面进行化学反应,从而生成一层所需金属化合物涂层(如碳化钛)。

⑦ PVD法(物理体相沉积):在真空室中使强化用的金属原子蒸发,或通过荷能粒子的轰击,在一个电流偏压的作用下,将其吸引并沉积到工件表面形成化层。利用PVD罚可在工件表面沉积碳化钛、氮化钛、氧化铝等多种化合物。

⑧ 激光表面强化:当具有一定功率的激光束以一定的扫描速度照射到经过黑化处理的模具工作表面时,将使模具工作表面在很短时间内由于吸收激光的能量而急剧升温。当激光束移开时,模具工作表面由基材自身传导而迅速冷却,从而形成具有一定性能的表面强化层,其硬度可提高15~20%,此外还具有淬火组子细小、耐磨性高、节能效果显著以及可改善工作条件等优点。

⑨ 离子注入:利用小型低能离子加速器,将需要注入元素的原子,在加热器的离子源中电离成离子,然后通过离子加热器的高电压电场将其加热,成为高速离子流,再经过磁分析器提炼后,将离子束强行打入置于靶室中的模具工作表面,从而改变模具表面的显微硬度和粗糙度,降低表面摩擦系数,最终提高工作的使用寿命。



3 模具的机械加工工艺

模具的机械加工工艺是直接影响模具使用寿命和产品质量的重要环节。
 
由于模具零件的形状多种多样而且精度要求高,因此在加工过程中除了使用车床、铣床、刨床、锸床和磨床等普通机械加工设备外,还需要应用各种先进设备,诸如点火花加工机床、点火花线切割加工机床和精密磨削机床等等。目前针对结构复杂且工艺要求特殊的模具,一种有别于传统机械加工的新型加工方法-模具特种加工(电加工)也得到了快速发展。
 
采用这种方法,不要求工具材料比工件材料更硬,也不需要在加工过程中施加明显的机械力,而是直接利用电能、化学能、光能和声能对工件进行加工,以达到一定的形状尺寸和表面粗糙度要求。加工实践证明:采用正确的加工工艺,使高精度模具的型腔表面粗糙度改善一倍,就可使模具使用寿命提高50%。这一点对塑料模具尤为重要。
 
[/login]
 
 
文章来源于网络智造家平台提供 查看全部
提高模具使用寿命的实用方法
 

1 合理选用模具材料

1.1模具材料的选用


选用模具材料时,应根据不同的生产批量、工艺方法和加工对象进行选择。
 
在大批量生产中,应选用长寿命的模具材料,如硬质合金,高强韧、高耐磨模具钢(如YG15、YG20);对小批量或新产品试制可采用锌合金、铋锡合金等模具材料;对于易变形、易断裂失效的通用模具,需要选用高强度、高韧性的材料(T10A);热锻模则要选用具有良好的韧性、强度、耐模性和抗冷热疲劳性能的材料(如5CrM-nMo);压铸模要采用热疲劳抗力高、高温强度高的合金钢(如3Cr2W8V);塑料模具则应选择易切削、组织致密、抛光性能好的材料。
 
此外,在设计凸模和凹模时,宜选用不同硬度或不同材料的模具相匹配,如:凸模用工具钢(如T10A),凹模用高碳高铬钢(如Cr12、Cr12MoV),模具使用寿命可提高5~6倍。

[login]

1.2合理的模具结构

模具设计的原则是保证足够的强度、刚度、同心度、对中性和合理的冲裁间隙,并减少应力集中,以保证由模具生产出来零件符合设计要求。因此对模具的主要工作零作(如冲模的凸、凹模,注塑模的动、定模,模锻模的上、下模等)要求其导向精度高、同心度和中性好及冲裁的间隙合理。


在进行模具设计时,应着重考虑的是:

① 设计凸模时必须注意导向支撑和对中保护。特别是设计小孔凸模时采用自身导向结构,可延长模具寿命。
② 对夹角、窄槽等薄弱部位,为了减少应力集中,要以圆弧过渡,圆弧半径R可取3~5mm。
③ 对于结构复杂的凹模采用镶拼结构,也可减少应力集中。
④ 合理增大间隙,改善凸模工作部分的受力状态,使冲裁力、卸件力和推件力下降,凸、凹模刃口磨损减少。


2 模具的热处理工艺

从模具失效分析得知,45%的模具失效是由于热处理不当造成的。众所周知,磨损、粘结均发生在表面,疲劳、断裂也往往从表面开始,因此对模具表面的加工质量要求非常高。但实际上由于加工痕迹的存在,热处理时表面氧化脱碳也在所难免。因此,模具的表面性能反而比基体差。采用热处理新技术是提高模具性能的经济而有效的重要措施。模具热处理工艺包括基体强韧化和表面强化处理。基体的强韧化在于提高基体的强度和韧度,减少断裂和变形。表面强化的主要目的的是提高模具表面的耐磨性、耐蚀性和润滑性能。



2.1 模具的整体强韧化工艺

模具既要具有优良的整体强韧化性能,又要具有优异的型腔表面性能,这样才能提高模具使用寿命,为了达到这个要求,出现了在对模具整体强韧化的基础上再进行表面强化的各种处理工艺:对普通冷作模具钢,采用低温淬火与低温回火处理,可收到增加韧性、减少脆性和折断的良好效果;对热作模具钢,采用高温淬火与高温回火处理,可显著提高热作模具钢的强韧性和热稳定性。例如,对于3Cr2W8V材料制成的压铸模,采用400℃~500℃及800℃~850℃的俩次预先正火而后进行高温淬火、回火处理,可提高韧性40%,模具寿命可提高1倍。

除此之外,还可采用形变热处理。变形热处理是把钢的强化与相变强化结合起来的一种强韧化工艺。形变热处理的强韧化本质在于获得细小的奥氏体晶粒、细化马氏体增加了马氏体中的位错密度并形成胞状亚结构,同时促进碳化物的弥散硬化作用。



2.2模具的表面强化热处理

模具表面强化处理工艺主要有气体氮化法、离子氮化法、点火花表面强化法、渗硼、TD法、CVD法、PVD法、激光表面强化法、离子注入法、等离子喷涂法等等。

① 气体软氮化:使氮在氮化温度分解后产生活性氮原子,被金属表面吸收渗入钢中并且不断自表面向内扩散,形成氮化层。模具经氮化处理后,表面硬度可达HV950~1200,使模具具有很高的红硬度和高的疲劳强度,并提高模具表面光洁的度和抗咬合能力。

② 离子氮化:将待处理的模具放在真空容器中,充以一定压力的含氮气体(如氮或氮、氢混合气),然后以被处理模具作阴极,以真空容器的罩壁作阳极,在阴阳极之间加400~600伏的直流电压,阴阳极间便产生辉光放电,容器里的气体被电离,在空间产生大量的电子与离子。在电场的作用下,正离子冲向阴极,以很高速度轰击模具表面,将模具加热。离能正离子冲入模具表面,获得电子,变成氮原子被模具表面吸收,并向内扩散形成氮化层。应用离子氮化法可提高模具的耐磨性和疲劳强度。

③ 点火化表面强化:这是一种直接利用电能的高能量密度对模具表面进行强化处理的工艺。它是通过火花放电的作用,把作为电极的导电材料溶渗进金属工件表层,从而形成合金化的表面强化层,使工作表面的物理、化学性能和机械性能得到改善。例如采用WC、TiC等硬质合金电极材料强化高速钢或合金工具钢表面,可形成显微硬度HV1100以上的耐磨、耐蚀和具有红硬性的强化层,使模具的使用寿命明显得到提高。点火花表面强化的优点是设备简单、操作方便,处理后的模具耐磨性提高显著;缺点是强化表面较粗糙,强化层厚度较薄,强化处理的效率低。

④ 渗硼:由于渗硼层具有良好的红硬性、耐磨性,通过渗硼能显著提高模具表面硬度(达到HV1300~2000)和耐磨性,可广泛用于模具表面强化,尤其适用于处理在磨粒磨损条件下的模具。但渗硼层往往存着较大的脆性,这也限制了它的应用。

⑤ TD热处理:在空气炉或盐槽中放入一个耐热钢制的坩埚,将硼砂放入坩埚加热熔化至800℃~1200℃,然后加入相应的碳化物形成粉末(如钛、钡、铌、铬),再将钢或硬质合金工件放入坩埚中浸渍保温1~2小时,加入元素将扩散至工件表面并与钢中的碳发生反应形成碳化物层,所得到的碳化物层具有很高的硬度和耐磨性。

⑥ CVD法(化学气相沉积):将模具放在氢气(或其它保护气体)中加热至900℃~1200℃后,以其为载气,把低温气化挥发金属的化合物气体如四氯化钛(TiCI4)和甲苯CH4(或其它碳氢化合物)蒸气带入炉中,使TiCI4中的钛和碳氢化合物中的碳(以及钢表面的碳分)在模具表面进行化学反应,从而生成一层所需金属化合物涂层(如碳化钛)。

⑦ PVD法(物理体相沉积):在真空室中使强化用的金属原子蒸发,或通过荷能粒子的轰击,在一个电流偏压的作用下,将其吸引并沉积到工件表面形成化层。利用PVD罚可在工件表面沉积碳化钛、氮化钛、氧化铝等多种化合物。

⑧ 激光表面强化:当具有一定功率的激光束以一定的扫描速度照射到经过黑化处理的模具工作表面时,将使模具工作表面在很短时间内由于吸收激光的能量而急剧升温。当激光束移开时,模具工作表面由基材自身传导而迅速冷却,从而形成具有一定性能的表面强化层,其硬度可提高15~20%,此外还具有淬火组子细小、耐磨性高、节能效果显著以及可改善工作条件等优点。

⑨ 离子注入:利用小型低能离子加速器,将需要注入元素的原子,在加热器的离子源中电离成离子,然后通过离子加热器的高电压电场将其加热,成为高速离子流,再经过磁分析器提炼后,将离子束强行打入置于靶室中的模具工作表面,从而改变模具表面的显微硬度和粗糙度,降低表面摩擦系数,最终提高工作的使用寿命。



3 模具的机械加工工艺

模具的机械加工工艺是直接影响模具使用寿命和产品质量的重要环节。
 
由于模具零件的形状多种多样而且精度要求高,因此在加工过程中除了使用车床、铣床、刨床、锸床和磨床等普通机械加工设备外,还需要应用各种先进设备,诸如点火花加工机床、点火花线切割加工机床和精密磨削机床等等。目前针对结构复杂且工艺要求特殊的模具,一种有别于传统机械加工的新型加工方法-模具特种加工(电加工)也得到了快速发展。
 
采用这种方法,不要求工具材料比工件材料更硬,也不需要在加工过程中施加明显的机械力,而是直接利用电能、化学能、光能和声能对工件进行加工,以达到一定的形状尺寸和表面粗糙度要求。加工实践证明:采用正确的加工工艺,使高精度模具的型腔表面粗糙度改善一倍,就可使模具使用寿命提高50%。这一点对塑料模具尤为重要。
 
[/login]
 
 
  • 文章来源于网络
  • 智造家平台提供