本月累计签到次数:

今天获取 积分

焊接

焊接

浏览

陈宽#14530 发表了文章 来自相关话题

浏览

陈宽#14530 发表了文章 来自相关话题

浏览

陈宽#14530 发表了文章 来自相关话题

浏览

陈宽#14530 发表了文章 来自相关话题

4 回答

有懂激光焊接的吗?这个为什么会出现一半焊接不上的

其它类 心如热火 2017-10-11 14:58 回复了问题 • 5 人关注 来自相关话题

624 浏览

专业帮您分析解决CO2气体保护焊常见故障!

其它类 长衫罩不住 2017-05-02 10:40 发表了文章 来自相关话题

气保焊机有别于其它焊机之处在于它是机、电、气三位一体的设备,在使用过程中,对于其所发生的问题应从三个因素去理解、分析和解决。一般来说,不能焊为电路故障,不好焊为机械故障,焊不好为工艺问题或保护气气体不纯、气路问题等其它原因。
一、机械问题(主要表现为送丝不稳、堵丝)
1.入口嘴、中间嘴、出口嘴是否同心在一条直线上。如 查看全部
气保焊机有别于其它焊机之处在于它是机、电、气三位一体的设备,在使用过程中,对于其所发生的问题应从三个因素去理解、分析和解决。一般来说,不能焊为电路故障,不好焊为机械故障,焊不好为工艺问题或保护气气体不纯、气路问题等其它原因。
一、机械问题(主要表现为送丝不稳、堵丝)
1.入口嘴、中间嘴、出口嘴是否同心在一条直线上。如
594 浏览

斜垫铁在点焊工艺中的作用

其它类 得道升仙 2017-04-07 11:37 发表了文章 来自相关话题

斜垫铁做为工业生产中不可或缺的一种工具,在点焊工艺上的应用也是很重要的。

1.一些斜垫铁的作用:设备垫铁是设备安装过程中用来调正、调平的工具。可以弥补设备制造误差和基础偏差,使设备安装满足规范中关于水平度、垂直度、标高等技术条件的要求。使设备满足正常使用的要求。

2.斜垫铁点焊的意义:因为垫铁通常是由两块斜垫铁, 查看全部
斜垫铁做为工业生产中不可或缺的一种工具,在点焊工艺上的应用也是很重要的。

1.一些斜垫铁的作用:设备垫铁是设备安装过程中用来调正、调平的工具。可以弥补设备制造误差和基础偏差,使设备安装满足规范中关于水平度、垂直度、标高等技术条件的要求。使设备满足正常使用的要求。

2.斜垫铁点焊的意义:因为垫铁通常是由两块斜垫铁,
浏览

jingjing 发表了文章 来自相关话题

浏览

jingjing 发表了文章 来自相关话题

656 浏览

对焊方法及工艺

其它类 爱因斯坦 2017-03-09 10:01 发表了文章 来自相关话题

对焊方法及工艺

对接电阻焊(以下简称对焊)是利用电阻热将两工件沿整个端面同时焊接起来的一类电阻焊方法。

对焊的生产率高、易于实现自动化,因而获得广泛应用。其应用范围可归纳如下:

(1)工件的接长 例如带钢、型材、线材、钢筋、钢轨、锅炉钢管、石油和天然气输送等管道的对焊。

(2)环形工件的对焊 例如汽车轮辋和自 查看全部
对焊方法及工艺

对接电阻焊(以下简称对焊)是利用电阻热将两工件沿整个端面同时焊接起来的一类电阻焊方法。

对焊的生产率高、易于实现自动化,因而获得广泛应用。其应用范围可归纳如下:

(1)工件的接长 例如带钢、型材、线材、钢筋、钢轨、锅炉钢管、石油和天然气输送等管道的对焊。

(2)环形工件的对焊 例如汽车轮辋和自
条新动态, 点击查看
这是模具通常会碰到的问题无论是试模阶段还是正常生产阶段;
一般带有皮纹面的模具表面处理是需要谨慎的,通常做法是先烧焊,维修好Fit 一下模,在返回皮纹厂再处理一下;
这里主要说的是烧焊,
1,由于模具的模仁,滑块,镶件等都经过热处理;
2,一般的烧焊,也是根据... 显示全部 »
这是模具通常会碰到的问题无论是试模阶段还是正常生产阶段;
一般带有皮纹面的模具表面处理是需要谨慎的,通常做法是先烧焊,维修好Fit 一下模,在返回皮纹厂再处理一下;
这里主要说的是烧焊,
1,由于模具的模仁,滑块,镶件等都经过热处理;
2,一般的烧焊,也是根据原有材料补一块一样或者相似的材料上去,但是这2块的材料不一样;前者是经过热处理,后者只是达到溶点后补上去的;没有皮纹要求的一般就是直接这样补焊就行了;
3,有皮纹面的一定要放回到炉子里加温,具体的温度根据不同材料型号规格和特性进行加温,
3.1 局部加温还是全加温要看情况(尺寸大小,进胶点位,成型工艺条件等)一定要注意对于尺寸要求高的,防止材料变形等;
3.2 放到炉子里加温之后,再烧焊处理;
3.3 这是要解决2块材料内部分子结构的排列问题,解决产品发白,气痕,或像溶接线(其实不是溶接线)等问题;
lilablume

lilablume 回答了问题 • 2016-10-14 14:44 • 6 个回复 不感兴趣

焊接材料选用原则?

赞同来自:

焊接材料选用标准依据以下原则制定。
1结构钢焊接材料的选用主要考虑其熔敷金属的强度等于或略高于母材。但对于淬硬倾向较大的钢种,其底层焊缝或非主要受力焊缝,可以选用其熔敷金属强度略低于母材的焊接材料。
2对于耐热钢或不锈钢的焊接材料,主要考虑其熔敷金属的化学成份... 显示全部 »
焊接材料选用标准依据以下原则制定。
1结构钢焊接材料的选用主要考虑其熔敷金属的强度等于或略高于母材。但对于淬硬倾向较大的钢种,其底层焊缝或非主要受力焊缝,可以选用其熔敷金属强度略低于母材的焊接材料。
2对于耐热钢或不锈钢的焊接材料,主要考虑其熔敷金属的化学成份应与母材基本接近。
3同时要考虑到产品的工作条件和刚度大小。
4同时要考虑到焊接工艺性能的因素。
5为了便于工厂对焊接材料的采购和管理,尽量简化品种。
6低合金钢与碳钢的异种钢焊,焊接材料选用基本原则是以机械性能达到较低一侧,而焊接工艺应按要求较高一侧。
7不锈钢与其他的异种钢焊接,焊接材料选用的基本原则是考虑过渡层的焊接特性。
8由于异种钢焊接情况比较复杂,某些情况下亦应通过焊接工艺试验或其它原则选定。
你水平怎么样?
指的是技术能力水平,分为以下几个原因:
(1)刚毕业基础几乎没有。学焊接的绝不能说毕业时是一张白纸,大学里的焊接基础课和专业课是完全可以掌握大部分的,虽没有焊接生产概念但理论总要学习的。有的人大学里可以参加各种焊接活动,有的人毕业了连焊条是啥都... 显示全部 »
你水平怎么样?
指的是技术能力水平,分为以下几个原因:
(1)刚毕业基础几乎没有。学焊接的绝不能说毕业时是一张白纸,大学里的焊接基础课和专业课是完全可以掌握大部分的,虽没有焊接生产概念但理论总要学习的。有的人大学里可以参加各种焊接活动,有的人毕业了连焊条是啥都不知道,差距来源于懒惰。当你和一起刚进入公司的同事竞争时,有基础与没基础的差距很明显,会出现一步跟不上,步步跟不上的困局。
(2)自以为是,不谦虚。焊接人员自以为是的很多,有性格原因,有职业原因。焊接是个很杂很多的学科,你学不完,学不全,向人请教是必须走的过程,这个不多说,都知道这个道理。马云曾经在给新员工的信中写到“阿里不会承诺你发财、升官,刚来公司不到一年的人,也千万别给我写战略报告,千万别瞎提阿里发展大计。。。”当你刚进入社会的这几年,是你积蓄能力最好的几年,在平日的工作中多做学习,应该做的是“看,信,思考,行动、分享”这五个步骤,为未来积蓄能量。
(3)不总结,总犯低级错误。技术水平是要慢慢提升,涉及到技术能力的问题你会犯错误,这个正常,但那种不认真出现的低级错误,如果经常出现就说明你的工作态度有问题,自己不总结,慢慢就会失去别人对你的信任。你想想,如果你是技术负责人,你手下有个人交给他简单的任务经常犯错,还经常犯同样的错误,你能信任他么?
(4)疏于学习。工作后很多人业余时间用来打游戏以及其他业务,几乎上班之外从不学习专业知识,这样的人成长几乎不会快,我总认为我说的一句话是有道理的”出来混欠的知识早晚要还的”,没有学习意识没人救得了你。
朝中有人

朝中有人 回答了问题 • 2016-11-04 11:28 • 6 个回复 不感兴趣

为什么中高碳钢比较难焊

赞同来自:

是的中高碳钢焊接时如何才能避免产生裂纹呢?我们现在需要焊接S40C这种碳素钢。
是的中高碳钢焊接时如何才能避免产生裂纹呢?我们现在需要焊接S40C这种碳素钢。
婷婷玉立

婷婷玉立 回答了问题 • 2016-11-08 09:09 • 9 个回复 不感兴趣

为什么焊接接头会产生再热裂纹?

赞同来自:

是的,特种设备在制造过程中往往发现焊缝在热处理后发现裂纹,特别如2.25Cr-1Mo,13MoNiMoR等材料,这种现象我们厂也很有
是的,特种设备在制造过程中往往发现焊缝在热处理后发现裂纹,特别如2.25Cr-1Mo,13MoNiMoR等材料,这种现象我们厂也很有
wohonstdu

wohonstdu 回答了问题 • 2016-11-15 15:06 • 8 个回复 不感兴趣

为什么可以水下焊接?

赞同来自:

水下焊接与切割是水下工程结构的安装、维修施工中不可缺少的重要工艺手段。它们常被用于海上救捞、海洋能源、海洋采矿等海洋工程和大型水下设施的施工过程中。水下焊接需要了解
水下焊接与切割是水下工程结构的安装、维修施工中不可缺少的重要工艺手段。它们常被用于海上救捞、海洋能源、海洋采矿等海洋工程和大型水下设施的施工过程中。水下焊接需要了解
煮酒论英雄

煮酒论英雄 回答了问题 • 2017-02-05 14:47 • 5 个回复 不感兴趣

铝材料怎么焊接?

赞同来自:

1.最适合焊接铝材的是拉丝式焊枪,如果你无法使用这种焊枪的话,尽量使用最短的焊枪以便保持焊枪的笔直;只能使用氩气作为保护气体;在焊接铝材(自动管焊机)的时候只能使用推枪手法。

2.如果你发现有送丝问题,可以试一试尺寸比焊丝大一号的导电头。

3.焊铝时最常用... 显示全部 »
1.最适合焊接铝材的是拉丝式焊枪,如果你无法使用这种焊枪的话,尽量使用最短的焊枪以便保持焊枪的笔直;只能使用氩气作为保护气体;在焊接铝材(自动管焊机)的时候只能使用推枪手法。

2.如果你发现有送丝问题,可以试一试尺寸比焊丝大一号的导电头。

3.焊铝时最常用的焊丝是较软的标准焊丝。而另一种则要硬一些(较容易送丝),它主要用于硬度和强度要求更高的焊接操作中。

4.在焊接开始前要做好铝材表面氧化层的清除工作,使用专用的不锈钢刷来清除氧化层。

5.焊接结束时填充好弧坑以防止裂缝。一个办法就是在焊后将焊枪在熔池中停留数秒。
4 回答

有懂激光焊接的吗?这个为什么会出现一半焊接不上的

其它类 心如热火 2017-10-11 14:58 回复了问题 • 5 人关注 来自相关话题

1 回答
1 回答
5 回答

铝材料怎么焊接?

机械自动化类 夜半无眠 2017-02-05 17:12 回复了问题 • 22 人关注 来自相关话题

1 回答
2 回答

这个静电斑是怎么产生的?

设备硬件类 机械设计 2016-12-13 14:26 回复了问题 • 3 人关注 来自相关话题

8 回答

为什么可以水下焊接?

机械自动化类 diesermensch 2016-11-15 15:22 回复了问题 • 9 人关注 来自相关话题

9 回答

为什么焊接接头会产生再热裂纹?

智能制造类 面包ssen 2016-11-08 09:25 回复了问题 • 10 人关注 来自相关话题 产生赞赏:¥1.00

6 回答

为什么中高碳钢比较难焊

智能制造类 遇见更美好 2016-11-04 11:35 回复了问题 • 7 人关注 来自相关话题 产生赞赏:¥5.00

5 回答

为什么,你我都是学焊接的,为啥我就没你混的好?

智能制造类 简爱 2016-11-01 10:22 回复了问题 • 6 人关注 来自相关话题

624 浏览

专业帮您分析解决CO2气体保护焊常见故障!

其它类 长衫罩不住 2017-05-02 10:40 发表了文章 来自相关话题

气保焊机有别于其它焊机之处在于它是机、电、气三位一体的设备,在使用过程中,对于其所发生的问题应从三个因素去理解、分析和解决。一般来说,不能焊为电路故障,不好焊为机械故障,焊不好为工艺问题或保护气气体不纯、气路问题等其它原因。
一、机械问题(主要表现为送丝不稳、堵丝)
1.入口嘴、中间嘴、出口嘴是否同心在一条直线上。如不在一条直线上则易导致送丝阻力加大,造成送丝不稳;
2.送丝轮是否打滑。第一次试机应将防锈脂擦除并要定期清理轮槽,注意要用软质的东西擦除。判断轮槽是否磨损严重:一般情况下让焊丝露出槽面1/3,否则应换相应丝径的送丝轮。轮槽必须按焊丝直径安装正确;
3.送丝轮挡圈仅起防止轮圈在送丝过程中脱落或窜动量太大的作用,而不宜旋得太紧,否则内嵌螺钉容易脱落或松动;
4.送丝软管(导丝管)由于长时间使用,在导丝管内充满灰尘和铁末,也会造成送丝阻力大,所以应经常清理。当导丝管用了一段时间,但还比较新时,清洁时可用压缩空气吹干净即可(尼龙管只能用此方法);当导丝管用旧了时,要用煤油、汽油、酒精等有机溶剂泡一泡,然后再清理。更换导丝管时,要依据焊丝直径选择合适软管,并根据枪的实际长度截取软管长度,且一定要清除螺旋钢丝管口处的毛刺;另外,低速焊时,细丝可用超一档焊丝直径的导丝管,但不允许粗丝采用细丝导丝管,如:Φ1.2丝可用Φ1.6丝的导丝管,但Φ1.6的焊丝不可用Φ1.2的导丝管。高速焊时,送丝管应严格按焊丝直径进行匹配;
5.导电嘴孔眼偏大时,应及时更换,否则会出现因间隙过大导电不良引起焊接过程不稳定或输出电流不够大的问题。焊接过程中采用防飞溅剂可延长导电嘴寿命,同时在施焊过程中应及时清理焊枪护套内的飞溅。钢焊丝的导电嘴,其孔径应比焊丝直径大0.1~0.2mm,长度约20~30mm。对于铝焊丝,要适当增加导电嘴的孔径(比焊丝直径大0.2~0.3mm)及长度,以减少送丝阻力和保证导电可靠,相同丝径焊铝导电嘴的孔径要比焊钢导电嘴的孔径大;
6.枪的选配,在满足作业半径条件下,主张用标准3m枪。焊枪电缆在使用时不能出现死弯儿,尤其是焊枪手柄与电缆相邻处,一定要给予高度重视,要保持送丝顺畅;
7.压紧力的选择要适当。一般将压力调节手柄旋紧在刻度2~4即可,不要太紧,以免焊丝变形增加送丝阻力(尤其焊铝、药芯焊时),同时也会加快轮槽的磨损;
8.送丝盘支撑轴,由于该轴为铝合金,在使用过程中与塑料孔长期磨损,应经常清洁其表面并涂上润滑脂;
9.焊丝盘旋转方向应为顺时针方向而不能逆时针方向。 
二、电路问题  
1.航空插头、插座、二次线缆、地线是否连接正确接触良好。
(1)航空插头正确连接方法
航空插头插接时,应正确对准插头与插座的定位插槽(宽、窄相对应),然后右旋锁紧,此时插座定位锁紧恰好进入插头定位锁紧孔,拆卸插头后一定要小心轻放,避免硬损伤。
(2)航空插头虚接时出现的现象
A.按枪无任何动作响应(电磁阀、马达工作不响应)。
B.电源面板正常显示范围为电压15~48V、电流预设数字刻度30~280,不正常显示电压为60~70V,电流预设刻度400左右,具体数值与电网电压有关。
C.电流、电压不可调。
(3)二次线缆正确连接方法
二次线缆快速接头连接方法是对准电源前面板二次输出插座内嵌槽,向前推入并右旋大约90°即可。
(4)二次线缆、地线虚接时出现的现象
A.接头处发热严重,甚至粘连;
B.大电流时焊接,对应的焊接电压超出正常匹配范围;
C.小电流时焊接,焊接过程不稳定;
D.干伸长适应能力下降(偏短)。 
2.加长线的处理 通常我们可加长到50m/50mm2,当有特殊要求再需加长时,建议加粗线缆截面积,但当线缆加长以后,因为线损加大会导致波控采样与电弧电压之间误差加大,应当适当提高给定电压。 3.引弧问题(保证焊接回路良好的情况下)
老型号电路板都是按1.6丝使用设计的,当用Φ1.0、Φ1.2等其它丝时,引弧电流总是偏高,现新型号电路板已克服此问题。 
三、保护气及气路问题(焊缝易氧化,尤其在焊接铝合金时)
1.CO2气体纯度对焊缝金属的致密性和塑性有很大影响。焊接用CO2气体纯度不应低于98%(体积法),其含水量小于0.005%(重量法)。
2.保护气体流量是否足够  检查气体流量V=(12~15)L/min,大电流焊接时应适当加大气体流量(根据电流或喷嘴孔径选择)。
3.气体加热器是否工作  检查加热器工作是否正常。开机后等待2~3min,用手触摸加热器应有温热的感觉,若不加热会导致加热器结霜,甚至堵塞气流通道或者增加气孔出现的机率。
4.导丝管是否破损,是否漏气。 5.分流器是否破损 若破损应更换,否则会影响保护气分配流向而导致保护不好。
6.气管是否破损。
7.枪体中各密封圈是否正常。 查看全部
气保焊机有别于其它焊机之处在于它是机、电、气三位一体的设备,在使用过程中,对于其所发生的问题应从三个因素去理解、分析和解决。一般来说,不能焊为电路故障,不好焊为机械故障,焊不好为工艺问题或保护气气体不纯、气路问题等其它原因。
一、机械问题(主要表现为送丝不稳、堵丝)
1.入口嘴、中间嘴、出口嘴是否同心在一条直线上。如不在一条直线上则易导致送丝阻力加大,造成送丝不稳;
2.送丝轮是否打滑。第一次试机应将防锈脂擦除并要定期清理轮槽,注意要用软质的东西擦除。判断轮槽是否磨损严重:一般情况下让焊丝露出槽面1/3,否则应换相应丝径的送丝轮。轮槽必须按焊丝直径安装正确;
3.送丝轮挡圈仅起防止轮圈在送丝过程中脱落或窜动量太大的作用,而不宜旋得太紧,否则内嵌螺钉容易脱落或松动;
4.送丝软管(导丝管)由于长时间使用,在导丝管内充满灰尘和铁末,也会造成送丝阻力大,所以应经常清理。当导丝管用了一段时间,但还比较新时,清洁时可用压缩空气吹干净即可(尼龙管只能用此方法);当导丝管用旧了时,要用煤油、汽油、酒精等有机溶剂泡一泡,然后再清理。更换导丝管时,要依据焊丝直径选择合适软管,并根据枪的实际长度截取软管长度,且一定要清除螺旋钢丝管口处的毛刺;另外,低速焊时,细丝可用超一档焊丝直径的导丝管,但不允许粗丝采用细丝导丝管,如:Φ1.2丝可用Φ1.6丝的导丝管,但Φ1.6的焊丝不可用Φ1.2的导丝管。高速焊时,送丝管应严格按焊丝直径进行匹配;
5.导电嘴孔眼偏大时,应及时更换,否则会出现因间隙过大导电不良引起焊接过程不稳定或输出电流不够大的问题。焊接过程中采用防飞溅剂可延长导电嘴寿命,同时在施焊过程中应及时清理焊枪护套内的飞溅。钢焊丝的导电嘴,其孔径应比焊丝直径大0.1~0.2mm,长度约20~30mm。对于铝焊丝,要适当增加导电嘴的孔径(比焊丝直径大0.2~0.3mm)及长度,以减少送丝阻力和保证导电可靠,相同丝径焊铝导电嘴的孔径要比焊钢导电嘴的孔径大;
6.枪的选配,在满足作业半径条件下,主张用标准3m枪。焊枪电缆在使用时不能出现死弯儿,尤其是焊枪手柄与电缆相邻处,一定要给予高度重视,要保持送丝顺畅;
7.压紧力的选择要适当。一般将压力调节手柄旋紧在刻度2~4即可,不要太紧,以免焊丝变形增加送丝阻力(尤其焊铝、药芯焊时),同时也会加快轮槽的磨损;
8.送丝盘支撑轴,由于该轴为铝合金,在使用过程中与塑料孔长期磨损,应经常清洁其表面并涂上润滑脂;
9.焊丝盘旋转方向应为顺时针方向而不能逆时针方向。 
二、电路问题  
1.航空插头、插座、二次线缆、地线是否连接正确接触良好。
(1)航空插头正确连接方法
航空插头插接时,应正确对准插头与插座的定位插槽(宽、窄相对应),然后右旋锁紧,此时插座定位锁紧恰好进入插头定位锁紧孔,拆卸插头后一定要小心轻放,避免硬损伤。
(2)航空插头虚接时出现的现象
A.按枪无任何动作响应(电磁阀、马达工作不响应)。
B.电源面板正常显示范围为电压15~48V、电流预设数字刻度30~280,不正常显示电压为60~70V,电流预设刻度400左右,具体数值与电网电压有关。
C.电流、电压不可调。
(3)二次线缆正确连接方法
二次线缆快速接头连接方法是对准电源前面板二次输出插座内嵌槽,向前推入并右旋大约90°即可。
(4)二次线缆、地线虚接时出现的现象
A.接头处发热严重,甚至粘连;
B.大电流时焊接,对应的焊接电压超出正常匹配范围;
C.小电流时焊接,焊接过程不稳定;
D.干伸长适应能力下降(偏短)。 
2.加长线的处理 通常我们可加长到50m/50mm2,当有特殊要求再需加长时,建议加粗线缆截面积,但当线缆加长以后,因为线损加大会导致波控采样与电弧电压之间误差加大,应当适当提高给定电压。 3.引弧问题(保证焊接回路良好的情况下)
老型号电路板都是按1.6丝使用设计的,当用Φ1.0、Φ1.2等其它丝时,引弧电流总是偏高,现新型号电路板已克服此问题。 
三、保护气及气路问题(焊缝易氧化,尤其在焊接铝合金时)
1.CO2气体纯度对焊缝金属的致密性和塑性有很大影响。焊接用CO2气体纯度不应低于98%(体积法),其含水量小于0.005%(重量法)。
2.保护气体流量是否足够  检查气体流量V=(12~15)L/min,大电流焊接时应适当加大气体流量(根据电流或喷嘴孔径选择)。
3.气体加热器是否工作  检查加热器工作是否正常。开机后等待2~3min,用手触摸加热器应有温热的感觉,若不加热会导致加热器结霜,甚至堵塞气流通道或者增加气孔出现的机率。
4.导丝管是否破损,是否漏气。 5.分流器是否破损 若破损应更换,否则会影响保护气分配流向而导致保护不好。
6.气管是否破损。
7.枪体中各密封圈是否正常。
594 浏览

斜垫铁在点焊工艺中的作用

其它类 得道升仙 2017-04-07 11:37 发表了文章 来自相关话题

斜垫铁做为工业生产中不可或缺的一种工具,在点焊工艺上的应用也是很重要的。

1.一些斜垫铁的作用:设备垫铁是设备安装过程中用来调正、调平的工具。可以弥补设备制造误差和基础偏差,使设备安装满足规范中关于水平度、垂直度、标高等技术条件的要求。使设备满足正常使用的要求。

2.斜垫铁点焊的意义:因为垫铁通常是由两块斜垫铁,二到三块平垫铁共同构成的,其高度通常在30至50mm之间不等。垫铁层与层之间的贴紧程度不同,点焊后则可使多层垫铁之间形成一个整体。相对增加垫铁组的稳定性。

3.斜垫铁不点焊会出现什么症状:如果垫铁不点焊固定,在短期内不会有明显的症状发生,但是经过长时间转动或振动之后,垫铁与垫铁之间则会发生撺动,破坏二次灌浆层,甚至破坏基础砼,而基础砼一但破裂,则整个基础的强度必然受到影响。一但基础被破坏,则设备的安危就可想而知了。 查看全部
斜垫铁做为工业生产中不可或缺的一种工具,在点焊工艺上的应用也是很重要的。

1.一些斜垫铁的作用:设备垫铁是设备安装过程中用来调正、调平的工具。可以弥补设备制造误差和基础偏差,使设备安装满足规范中关于水平度、垂直度、标高等技术条件的要求。使设备满足正常使用的要求。

2.斜垫铁点焊的意义:因为垫铁通常是由两块斜垫铁,二到三块平垫铁共同构成的,其高度通常在30至50mm之间不等。垫铁层与层之间的贴紧程度不同,点焊后则可使多层垫铁之间形成一个整体。相对增加垫铁组的稳定性。

3.斜垫铁不点焊会出现什么症状:如果垫铁不点焊固定,在短期内不会有明显的症状发生,但是经过长时间转动或振动之后,垫铁与垫铁之间则会发生撺动,破坏二次灌浆层,甚至破坏基础砼,而基础砼一但破裂,则整个基础的强度必然受到影响。一但基础被破坏,则设备的安危就可想而知了。
656 浏览

对焊方法及工艺

其它类 爱因斯坦 2017-03-09 10:01 发表了文章 来自相关话题

对焊方法及工艺

对接电阻焊(以下简称对焊)是利用电阻热将两工件沿整个端面同时焊接起来的一类电阻焊方法。

对焊的生产率高、易于实现自动化,因而获得广泛应用。其应用范围可归纳如下:

(1)工件的接长 例如带钢、型材、线材、钢筋、钢轨、锅炉钢管、石油和天然气输送等管道的对焊。

(2)环形工件的对焊 例如汽车轮辋和自行车、摩托车轮圈的对焊、各种链环的对焊等。

(3)部件的组焊 将简单轧制、锻造、冲压或机加工件对焊成复杂的零件,以降低成本。例如汽车方向轴外壳和后桥壳体的对焊,各种连杆、拉杆的对焊,以及特殊零件的对焊等。

(4)异种金属的对焊 可以节约贵重金属,提高产品性能。例如刀具的工作部分(高速钢)与尾部(中碳钢)的对焊,内燃机排气阀的头部(耐热钢)与尾部(结构钢)的对焊,铝铜导电接头的对焊等。

对焊分为电阻对焊和闪光对焊两种。

电阻对焊

电阻对焊是将两工件端面始终压紧,利用电阻热加热至塑性状态,然后迅速施加顶锻压力(或不加顶锻压力只保持焊接时压力)完成焊接的方法。

一、电阻对焊的电阻和加热

对焊时的电阻分布如图14-2所示。总电阻可用下式表示:

R=2Rω+RC+2Reω

式中 Rω--一个工件导电部分的内部电阻(Ω);

Rc--两工件间的接触电阻(Ω);

Rω--工件与电极间的接触电阻(Ω);

工件与电极之间的接触电阻由于阻值小,且离接合面较远,通常忽略不计。

工件的内部电阻与被焊金属的电阻率ρ和工件伸出电极的长度l0成正比,与工件的断面积s成反比。

和点焊时一样,电阻对焊时的接触电阻取决于接触面的表面状态、温度及压力。当接触电阻有明显的氧化物或其他赃物时,接触电阻就大。温度或压力的增高,都会因实际接触面积的增大而使接触电阻减小。焊接刚开始时,接触点上的电流密度很大;端面温度迅速升高后,接触电阻急剧减小。加热到一定温度(钢600度,铝合金350度)时,接触电阻完全消失。

和点焊一样,对焊时的热源也是由焊接区电阻产生的电阻热。电阻对焊时,接触电阻存在的时间极短,产生的热量小于总热量的10-15%。但因这部分热量是接触面附近很窄的区域内产生的。所以会使这一区域的温度迅速升高,内部电阻迅速增大,即使接触电阻完全消失,该区域的产热强度仍比其他地方高。

所采用的焊接条件越硬(即电流越大和通电时间越短),工件的压紧力越小,接触电阻对加热的影响越明显。

二、电阻对焊的焊接循环、工艺参数和工件准备

1、焊接循环

电阻对焊时,两工件始终压紧,当端面温升高到焊接温度Tω时,两工件端面的距离小到只有几个埃,端面间原子发生相互作用,在接合上产生共同晶粒,从而形成接头。电阻对焊时的焊接循环有两种:等压的和加大锻压力的。前者加压机构简单,便于实现。后者有利于提高焊接质量,主要用于合金钢,有色金属及其合金的电阻对焊,为了获得足够的塑性变形和进一步改善接头质量,还应设置电流顶锻程序。

2、工艺参数

电阻对焊的主要工艺参数有:伸出长度、焊接电流(或焊接电流密度)、焊接通电时间、焊接压力和顶锻压力。

(1)伸出长度l0即工件伸出夹钳电极端面的长度。选择伸出长度时,要考虑两个因素:顶锻时工件的稳定性和向夹钳的散热。如果l0过长,则顶锻时工件会失稳旁弯。l0过短,则由于向钳口的散热增强,使工件冷却过于强烈,会增加塑性变形的困难。对于直径为d的工件,一般低碳钢:l0=(0.5-1)d,铝和黄铜:l0=(1-2)d,铜:l0=(1.5-2.5)d。

(2)焊接电流Iω和焊接时间tω在电阻对焊时,焊接电流常以电流密度jω来表示。jω和tω是决定工件加热的两个主要参数。二者可以在一定范围内相应地调配。可以采用大电流密度、短时间(强条件),也可以采用小电流密度、长时间(弱条件)。但条件过强时,容易产生未焊透缺陷;过软时,会使接口端面严重氧化、接头区晶粒粗大、影响接头强度。(3)焊接压力Fω与顶锻压力Fu,Fω对接头处的产热和塑性变形都有影响。减小Fω有利于产热,但不利于塑性变形。因此,易用较小的Fω进行加热,而以大得多的Fu进行顶锻。但是Fω也不能过低,否则会引起飞溅、增加端面氧化,并在接口附近造成疏松。

3、工件准备

电阻对焊时,两工件的端面形状和尺寸应该相同,以保证工件的加热和塑性变形一致。工件的端面,以及与夹钳接触的表面必须进行严格清理。端面的氧化物和赃物将会直接影响到接头的质量。与夹钳接触的工件表面的氧化物和赃物将会增大接触处电阻,使工件表面烧伤、钳口磨损加剧,并增大功率损耗。

清理工件可以用砂轮、钢丝刷等机械手段,也可以用酸洗。

电阻焊接头中易产生氧化物夹杂。对于焊接质量要求高的稀有金属、某些合金钢和有色金属时,常采用氩、氦等保护氛来解决。

电阻对焊虽有接头光滑、毛刺小、焊接过程简单等优点,但其接头的力学性能较低,对工件端面的准备工作要求高,因此仅用于小断面(小于250mm2)金属型材的对接。

闪光对焊

闪光对焊可分为连续闪光对焊和预热闪光对焊。连续闪光对焊由两个主要阶段组成:闪光阶段和顶锻阶段。预热闪光对焊只是在闪光阶段前增加了预热阶段。

一、闪光对焊的两个阶段

1、闪光阶段

闪光的主要作用是加热工件。在此阶段中,先接通电源,并使两工件端面轻微接触,形成许多接触点。电流通过时,接触点熔化,成为连接两端面的液体金属过梁。由于液体过梁中的电流密度极高,使过梁中的液体金属蒸发、过梁爆破。随着动夹钳的缓慢推进,过梁也不断产生与爆破。在蒸气压力和电磁力的作用下,液态金属微粒不断从接口间喷射出来。形成火花急流--闪光。

在闪光过程中,工件逐渐缩短,端头温度也逐渐升高。随着端头温度的升高,过梁爆破的速度将加快,动夹钳的推进速度也必须逐渐加大。在闪光过程结束前,必须使工件整个端面形成一层液体金属层,并在一定深度上使金属达到塑性变形温度。

由于过梁爆破时所产生的金属蒸气和金属微粒的强烈氧化,接口间隙中气体介质的含氧量减少,其氧化能力可降低,从而提高接头的质量。但闪光必须稳定而且强烈。所谓稳定是指在闪光过程中不发生断路和短路现象。断路会减弱焊接处的自保护作用,接头易被氧化。短路会使工件过烧,导致工件报废。所谓强烈是指在单位时间内有相当多的过梁爆破。闪光越强烈,焊接处的自保护作用越好,这在闪光后期尤为重要。

2、顶锻阶段

在闪光阶段结束时,立即对工件施加足够的顶端压力,接口间隙迅速减小过梁停止爆破,即进入顶锻阶段。顶锻的作用是密封工件端面的间隙和液体金属过梁爆破后留下的火口,同时挤出端面的液态金属及氧化夹杂物,使洁净的塑性金属紧密接触,并使接头区产生一定的塑性变形,以促进再结晶的进行、形成共同晶粒、获得牢固的接头。闪光对焊时在加热过程中虽有熔化金属,但实质上是塑性状态焊接。

预热闪光对焊是在闪光阶段之前先以断续的电流脉冲加热工件,然后在进入闪光和顶锻阶段。预热目的如下:

(1)减小需用功率 可以在小容量的焊机上焊接断面面积较大的工件,因为当焊机容量不足时,若不先将工件预热到一定温度,就不可能激发连续的闪光过程。此时,预热是不得已而采取的手段。

(2)降低焊后的冷却速度 这将有利于防止淬火钢接头在冷却时产生淬火组织和裂纹。

(3)缩短闪光时间 可以减少闪光余量,节约贵重金属。

预热不足之处是:

(1)延长了焊接周期,降低了生产率;

(2)使过程的自动化更加复杂;

(3)预热控制较困难。预热程度若不一致,就会降低接头质量的稳定性。

二、闪光对焊的电阻和加热

闪光对焊时的接触电阻Rc即为两工件端面间液体金属过梁的总电阻,其大小取决于同时存在的过梁数及其横断面积。后两项又与工件的横断面积、电流密度和两工件的接近速度有关。随着这三者的增大,同时存在的过梁数及其横截面积增大,Rc将减小。闪光对焊的Rc比电阻对焊大得多,并且存在于整个闪光阶段,虽然其电阻值逐渐减小,但始终大于工件的内部电阻,直到顶锻开始瞬间Rc才完全消失。图14-5是闪光对焊时Rc、2Rω和R变化的一般规律。Rc逐渐减小是由于在闪光过程中,随着端面温度的升高,工件接近速度逐渐增大,过梁的数目和尺寸都随之增大的缘故。

由于Rc大并且存在整个闪光阶段,所以闪光对焊时接头的加热主要靠Rc。

三、闪光对焊的焊接循环、工艺参数和工件准备

1、焊接循环

闪光对焊的焊接循环14-7所示,图中复位时间是指动夹钳由松开工件至回到原位的时间。预热方法有两种:电阻预热和闪光预热,图中(b)采用的是电阻预热。

2、工艺参数

闪光对焊的主要参数有:伸出长度、闪光电流、闪光流量、闪光速度、顶锻流量、顶锻速度、顶锻压力、顶锻电流、夹钳夹持力等。图14-8是连续闪光对焊各流量和伸出长度的示意图。下面介绍各工艺参数对焊接质量的影响及选用原则:

(1)伸长长度l0 和电阻对焊一样,l0影响沿工件轴向的温度分布和接头的塑性变形。此外,随着l0的增大,使焊接回路的阻抗增大,需用功率也要增大。一般情况下,棒材和厚臂管材l0=(0.7-1.0)d,d为圆棒料的直径或方棒料的边长。

对于薄板(δ=1-4mm)为了顶锻时不失稳,一般取l0=(4-5)δ。

不同金属对焊时,为了使两工件上的温度分布一致,通常是导电性和导热性差的金属l0应较小。表1是不同金属闪光对焊时的l0参考值。

(2)闪光电流If和顶锻电流Iu If取决于工件的断面积和闪光所需要的电流密度jf。jf的大小又与被焊金属的物理性能、闪光速度、工件断面的面积和形状,以及端面的加热状态有关。在闪光过程中,随着vf的逐渐提高和接触电阻Rc的逐渐减小,jf将增大。顶锻时,Rc迅速消失,电流将急剧增大到顶锻电流Iu。




当焊接大截面钢件时,为增加工件的加热深度,应采用较小的闪光速度,所用的平均jf一般不超过5A/mm2。表2为断面积200-1000mm2工件闪光对焊时jf和ju的参考值。




电流的大小取决于焊接变压器的空载电压U20。因此,在实际生产中一般是给定次级空载电压。选定U20时,除应考虑焊机回路的阻抗,阻抗大时,U20应相应提高。焊接大断面工件时,有时采用分级调节次级电压的方法,开始时,用较高的U20来激发闪光,然后降低到适应值。

(3)闪光流量δf 选择闪光流量,应满足在闪光结束时整个工件端面有一熔化金属层,同时在一定深度上达到塑性变形温度。如果δf 过小,则不能满足上述要求,会影响焊接质量。δf过大,又会浪费金属材料、降低生产率。在选择δf时还应考虑是否有预热,因预热闪光对焊的δf可比连续闪光对焊小30-50%。

(4)闪光速度vf 足够大的闪光速度才能保证闪光的强烈和稳定。但vf过大会使加热区过窄,增加塑性变形的困难,同时,由于需要的焊接电流增加,会增大过梁爆破后的火口深度,因此将会降低接头质量。选择vf时还应考虑下列因素:1)被焊材料的成分和性能。含有易氧化元素多的或导电导热性好的材料,vf应较大。例如焊奥氏体不锈钢和铝合金时要比焊低碳钢时大;

2)是否有预热。有预热时容易激发闪光,因而可提高vf。

3)顶锻前应有强烈闪光。vf应较大,以保证在端面上获得均匀的金属层。

(5)顶锻流量δu δu 影响液体金属的排除和塑性变形的大小。δu 过小时,液态金属残留在接口中,易形成疏松、缩孔、裂纹等缺陷;δu 过大时,也会因晶纹弯曲严重,降低接头的冲击韧度。δu 根据工件断面积选取,随着断面积的增大而增大。

顶锻时,为防止接口氧化,在端面接口闭合前不立刻切断电流,因此顶锻流量应包括两部分----有电流顶锻留量和无电流顶锻留量,前者为后者的0.5-1倍。

(6)顶锻速度vu 为避免接口区因金属冷却而造成液态金属排除及塑性金属变形的困难,以及防止端面金属氧化,顶锻速度越快越好。最小的顶锻速度取决于金属的性能。焊接奥氏体钢的最小顶锻速度均为焊接珠光体钢的两倍。导热性好的金属(如铝合金)焊接时需要很高的顶锻速度(150-200mm/s)。对于同一种金属,接口区温度梯度大的,由于接头的冷却速度快,也需要提高顶锻速度。

(7)顶锻压力Fu Fu通常以单位面积的压力,即顶锻压强来表示。顶锻压强的大小应保证能挤出接口内的液态金属,并在接头处产生一定的塑性变形。顶锻压强过小,则变形不足,接头强度下降;顶锻压强过大,则变形量过大,晶纹弯曲严重,又会降低接头冲击韧度。

顶锻压强的大小取决于金属性能、温度分布特点、顶锻留量和速度、工件断面形状等因素。高温强度大的金属要求大的顶锻压强。增大温度梯度就要提高顶锻压强。由于高的闪光速度会导致温度梯度增大,因此焊接导热性好的金属(铜、铝合金)时,需要大的顶锻压强(150-400Mpa)。

(8)预热闪光对焊参数 除上述工艺参数外,还应考虑预热温度和预热时间。

预热温度根据工件断面和材料性能选择,焊接低碳钢时,一般不超过700-900度。随着工件断面积增大,预热温度应相应提高。

预热时间与焊机功率、工件断面大小及金属的性能有关,可在较大范围内变化。预热时间取决于所需预热温度。

预热过程中,预热造成的缩短量很小,不作为工艺参数来规定。

(9)夹钳的夹持力Fc必须保证工件在顶锻时不打滑 Fc与顶锻压力Fu和工件与夹钳间的摩擦系数f有关,他们的关系是:Fc≥Fu/2f。通常F0=(1.5-4.0)Fu,断面紧凑的低碳钢取下限,冷轧不锈钢板取上限。当夹具上带有顶撑装置时,加紧力可以大大降低,此时Fc=0.5Fu就足够了。

3、工件准备

闪光对焊的工件准备包括:端面几何形状、毛坯端头的加工和表面清理。

闪光对焊时,两工件对接面的几何形状和尺寸应基本一致。否则将不能保证两工件的加热和塑性变形一致,从而将会影响接头质量。在生产中,圆形工件直径的差别不应超过15%,方形工件和管形工件不应超过10%。

在闪光对焊大断面工件时,最好将一个工件的端部倒角,使电流密度增大,以便于激光闪发。这样就可以不用预热或闪光初期提高次级电压。

对焊毛坯端头的加工可以在剪床、冲床、车床上进行,也可以用等离子或气焰切割,然后清除端面。

闪光对焊时,因端部金属在闪光时被烧掉,故对端面清理要求不甚严格。但对夹钳和工件接触面的清理要求,应和电阻对焊一样。

四、常用金属的闪光对焊

所有钢和有色金属几乎都可以闪光对焊,但要获得优质接头,还需根据金属的有关特性,采取必要的工艺措施。现分析如下:

(1)导电导热性 对于导电导热性好的金属,应采用较大的比功率和闪光速度,较短的焊接时间。

(2)高温强度 对于高温强度高的金属,应采用增大温塑性区的宽度,采用较大的顶锻力。

(3)结晶温度区间 结晶温度区间越大,半熔化区越宽,应采用较大的顶锻压力和顶锻留量,以便把半溶化区中的熔化金属全部排挤进去,以免留在接头中引起缩孔、疏松和裂纹等缺陷。(4)热敏感性 常见的有两种情况,第一种是淬火钢,焊后接头易产生淬火组织,使硬度增高、塑性降低,严重时会产生淬火裂纹。淬火钢通常采用加热区宽的预热闪光对焊,焊后采用缓慢冷却和回火等措施。第二种是经冷作强化的金属(如奥氏体不锈钢),焊接时接头和热影响区发生软化,使接头强度降低。焊接此类金属通常采用较大的闪光速度和顶锻压力,以尽量缩小软化区和减轻软化程度。

(5)氧化性 接头中的氧化物夹杂对接头质量有严重危害,因此,防止氧化和排除氧化是提高接头质量的关键。金属的成分不同,其氧化性的生成也不同。若生成氧化物的熔点低于被焊金属,这时氧化物有较好的流动性,顶锻时容易被排挤出来。若生成氧化物的熔点高于被焊金属,如SiO2、Al2O3、Cr2O3等,就必须在被焊金属还处在溶化状态时,才有可能将他们排出。因此,在焊接含有较多硅、铝、铬、一类元素的合金钢时,应该采取严格的工艺措施,彻底排除氧化物。

下面介绍几种常用金属材料闪光对焊的特点:

1、碳素钢的闪光对焊

这类材料具有电阻系数高,加热时碳元素的氧化为接口提供保护性气氛CO和CO2,不含有生成高熔点氧化物的元素等优点。因而都属于焊接性较好的材料。

随着钢中的含碳量的增加,电阻系数增大、结晶区间、高温强度及淬硬倾向都随之增大。因而需要相应增加顶锻压强和顶锻留量。为了减轻淬火的影响。可采用预热闪光对焊,并进行焊后热处理。

碳素钢闪光对焊时,由于碳向加热端面扩散并被强烈氧化,以及顶锻时,半溶化区内含碳量高的溶化金属被挤出,所以在接头处形成含碳量低的贫碳层(呈白色,也称亮带)。贫碳层的宽度随着钢含量的提高、预热时间的加长而增宽;随着含碳量的增大和气体介质氧化倾向的减弱而变窄。采用长时间的热处理可以消除贫碳层。

用得最多的是碳素钢闪光对焊。只要焊接条件选择适当,一般不会出现困难。甚至对溶焊来说比较难焊的铸铁也是一样。

铸铁通常采用预热闪光对焊,用连续闪光对焊容易形成白口。由于含碳量很高,闪光时产生大量的CO和CO2保护气氛,自保护作用较强,即使在工艺参数波动很大时,在接口中也只有少量氧化夹杂物。

2、合金钢的闪光对焊

合金元素含量对钢性能的影响和应采取的工艺措施如下:

1)钢中的铝、铬、硅、钼等元素易生成高熔点氧化物,应增大闪光和顶锻速度,以减少其氧化。

2)合金元素含量增加,高温强度提高,应增加顶锻压强。

3)对于珠光体钢,合金元素增加,淬火倾向性就增大,应采取防止淬火脆化的措施。

下表是碳素钢和合金钢闪光对焊工艺参数的参考值。




低合金钢的焊接特点与中碳钢相似,具有淬硬倾向,应采用相应的热处理方法。这类钢的高温强度大,易生成氧化物夹杂,需要采用较高的顶锻压强,较高的闪光和顶锻速度。

高碳合金钢除具有高碳钢的特点外,还含有一定数量的合金元素。由于含碳量高,结晶温度区间宽,接口处的半熔区就较宽,如果顶锻压力不足,塑性变形量不够,残留在半溶化区内的液态金属将形成疏松组织。还因含有合金元素,会形成高熔点氧化物夹杂。因此,需要较高的闪光和顶锻速度,较大的顶锻压强和顶锻留量。奥氏体钢的主要合金元素是Cr和Ni,这种钢具有高温强度高,导电和导热性差、熔点低(与低碳钢相比),又有大量易形成高熔点氧化物的合金元素(如Cr)。因此,要求有大的顶锻压强,高的闪光和顶锻速度。高的闪光速度可以减小加热区,可有效地防止热影响区晶粒急剧长大和抗腐蚀性的降低。

3、铝及其合金的闪光对焊

这类材料具有导电导热性好,熔点低,易氧化且氧化物熔点高、塑性温度区窄等特点,给焊接带来困难。

铝合金对焊的焊接性较差,工艺参数选择不当时,极易产生氧化夹杂物、疏松等缺陷,使接头强度和塑性急剧降低。闪光对焊时,必须采用很高的闪光和顶锻速度、大的顶锻留量和强迫形成的顶锻模式。所需比功率也要比钢件大得多。

4、铜及其合金的闪光对焊

铜的导热性比铝好,熔点较高,因而比铝要难焊的多。纯铜闪光对焊时,很难在端面形成液态金属层和保持稳定的闪光过程,也很难获得良好的塑性温度区。为此,焊接时需要很高的最后闪光速度、顶锻速度和顶锻压强。

铜合金(如黄铜、青铜)的对焊比纯铜容易。黄铜对焊时由于锌的蒸发而使接头性能下降,为了减少锌的蒸发,也应采用很高的最后闪光速度、顶锻速度和顶锻压强。

  查看全部
对焊方法及工艺

对接电阻焊(以下简称对焊)是利用电阻热将两工件沿整个端面同时焊接起来的一类电阻焊方法。

对焊的生产率高、易于实现自动化,因而获得广泛应用。其应用范围可归纳如下:

(1)工件的接长 例如带钢、型材、线材、钢筋、钢轨、锅炉钢管、石油和天然气输送等管道的对焊。

(2)环形工件的对焊 例如汽车轮辋和自行车、摩托车轮圈的对焊、各种链环的对焊等。

(3)部件的组焊 将简单轧制、锻造、冲压或机加工件对焊成复杂的零件,以降低成本。例如汽车方向轴外壳和后桥壳体的对焊,各种连杆、拉杆的对焊,以及特殊零件的对焊等。

(4)异种金属的对焊 可以节约贵重金属,提高产品性能。例如刀具的工作部分(高速钢)与尾部(中碳钢)的对焊,内燃机排气阀的头部(耐热钢)与尾部(结构钢)的对焊,铝铜导电接头的对焊等。

对焊分为电阻对焊和闪光对焊两种。

电阻对焊

电阻对焊是将两工件端面始终压紧,利用电阻热加热至塑性状态,然后迅速施加顶锻压力(或不加顶锻压力只保持焊接时压力)完成焊接的方法。

一、电阻对焊的电阻和加热

对焊时的电阻分布如图14-2所示。总电阻可用下式表示:

R=2Rω+RC+2Reω

式中 Rω--一个工件导电部分的内部电阻(Ω);

Rc--两工件间的接触电阻(Ω);

Rω--工件与电极间的接触电阻(Ω);

工件与电极之间的接触电阻由于阻值小,且离接合面较远,通常忽略不计。

工件的内部电阻与被焊金属的电阻率ρ和工件伸出电极的长度l0成正比,与工件的断面积s成反比。

和点焊时一样,电阻对焊时的接触电阻取决于接触面的表面状态、温度及压力。当接触电阻有明显的氧化物或其他赃物时,接触电阻就大。温度或压力的增高,都会因实际接触面积的增大而使接触电阻减小。焊接刚开始时,接触点上的电流密度很大;端面温度迅速升高后,接触电阻急剧减小。加热到一定温度(钢600度,铝合金350度)时,接触电阻完全消失。

和点焊一样,对焊时的热源也是由焊接区电阻产生的电阻热。电阻对焊时,接触电阻存在的时间极短,产生的热量小于总热量的10-15%。但因这部分热量是接触面附近很窄的区域内产生的。所以会使这一区域的温度迅速升高,内部电阻迅速增大,即使接触电阻完全消失,该区域的产热强度仍比其他地方高。

所采用的焊接条件越硬(即电流越大和通电时间越短),工件的压紧力越小,接触电阻对加热的影响越明显。

二、电阻对焊的焊接循环、工艺参数和工件准备

1、焊接循环

电阻对焊时,两工件始终压紧,当端面温升高到焊接温度Tω时,两工件端面的距离小到只有几个埃,端面间原子发生相互作用,在接合上产生共同晶粒,从而形成接头。电阻对焊时的焊接循环有两种:等压的和加大锻压力的。前者加压机构简单,便于实现。后者有利于提高焊接质量,主要用于合金钢,有色金属及其合金的电阻对焊,为了获得足够的塑性变形和进一步改善接头质量,还应设置电流顶锻程序。

2、工艺参数

电阻对焊的主要工艺参数有:伸出长度、焊接电流(或焊接电流密度)、焊接通电时间、焊接压力和顶锻压力。

(1)伸出长度l0即工件伸出夹钳电极端面的长度。选择伸出长度时,要考虑两个因素:顶锻时工件的稳定性和向夹钳的散热。如果l0过长,则顶锻时工件会失稳旁弯。l0过短,则由于向钳口的散热增强,使工件冷却过于强烈,会增加塑性变形的困难。对于直径为d的工件,一般低碳钢:l0=(0.5-1)d,铝和黄铜:l0=(1-2)d,铜:l0=(1.5-2.5)d。

(2)焊接电流Iω和焊接时间tω在电阻对焊时,焊接电流常以电流密度jω来表示。jω和tω是决定工件加热的两个主要参数。二者可以在一定范围内相应地调配。可以采用大电流密度、短时间(强条件),也可以采用小电流密度、长时间(弱条件)。但条件过强时,容易产生未焊透缺陷;过软时,会使接口端面严重氧化、接头区晶粒粗大、影响接头强度。(3)焊接压力Fω与顶锻压力Fu,Fω对接头处的产热和塑性变形都有影响。减小Fω有利于产热,但不利于塑性变形。因此,易用较小的Fω进行加热,而以大得多的Fu进行顶锻。但是Fω也不能过低,否则会引起飞溅、增加端面氧化,并在接口附近造成疏松。

3、工件准备

电阻对焊时,两工件的端面形状和尺寸应该相同,以保证工件的加热和塑性变形一致。工件的端面,以及与夹钳接触的表面必须进行严格清理。端面的氧化物和赃物将会直接影响到接头的质量。与夹钳接触的工件表面的氧化物和赃物将会增大接触处电阻,使工件表面烧伤、钳口磨损加剧,并增大功率损耗。

清理工件可以用砂轮、钢丝刷等机械手段,也可以用酸洗。

电阻焊接头中易产生氧化物夹杂。对于焊接质量要求高的稀有金属、某些合金钢和有色金属时,常采用氩、氦等保护氛来解决。

电阻对焊虽有接头光滑、毛刺小、焊接过程简单等优点,但其接头的力学性能较低,对工件端面的准备工作要求高,因此仅用于小断面(小于250mm2)金属型材的对接。

闪光对焊

闪光对焊可分为连续闪光对焊和预热闪光对焊。连续闪光对焊由两个主要阶段组成:闪光阶段和顶锻阶段。预热闪光对焊只是在闪光阶段前增加了预热阶段。

一、闪光对焊的两个阶段

1、闪光阶段

闪光的主要作用是加热工件。在此阶段中,先接通电源,并使两工件端面轻微接触,形成许多接触点。电流通过时,接触点熔化,成为连接两端面的液体金属过梁。由于液体过梁中的电流密度极高,使过梁中的液体金属蒸发、过梁爆破。随着动夹钳的缓慢推进,过梁也不断产生与爆破。在蒸气压力和电磁力的作用下,液态金属微粒不断从接口间喷射出来。形成火花急流--闪光。

在闪光过程中,工件逐渐缩短,端头温度也逐渐升高。随着端头温度的升高,过梁爆破的速度将加快,动夹钳的推进速度也必须逐渐加大。在闪光过程结束前,必须使工件整个端面形成一层液体金属层,并在一定深度上使金属达到塑性变形温度。

由于过梁爆破时所产生的金属蒸气和金属微粒的强烈氧化,接口间隙中气体介质的含氧量减少,其氧化能力可降低,从而提高接头的质量。但闪光必须稳定而且强烈。所谓稳定是指在闪光过程中不发生断路和短路现象。断路会减弱焊接处的自保护作用,接头易被氧化。短路会使工件过烧,导致工件报废。所谓强烈是指在单位时间内有相当多的过梁爆破。闪光越强烈,焊接处的自保护作用越好,这在闪光后期尤为重要。

2、顶锻阶段

在闪光阶段结束时,立即对工件施加足够的顶端压力,接口间隙迅速减小过梁停止爆破,即进入顶锻阶段。顶锻的作用是密封工件端面的间隙和液体金属过梁爆破后留下的火口,同时挤出端面的液态金属及氧化夹杂物,使洁净的塑性金属紧密接触,并使接头区产生一定的塑性变形,以促进再结晶的进行、形成共同晶粒、获得牢固的接头。闪光对焊时在加热过程中虽有熔化金属,但实质上是塑性状态焊接。

预热闪光对焊是在闪光阶段之前先以断续的电流脉冲加热工件,然后在进入闪光和顶锻阶段。预热目的如下:

(1)减小需用功率 可以在小容量的焊机上焊接断面面积较大的工件,因为当焊机容量不足时,若不先将工件预热到一定温度,就不可能激发连续的闪光过程。此时,预热是不得已而采取的手段。

(2)降低焊后的冷却速度 这将有利于防止淬火钢接头在冷却时产生淬火组织和裂纹。

(3)缩短闪光时间 可以减少闪光余量,节约贵重金属。

预热不足之处是:

(1)延长了焊接周期,降低了生产率;

(2)使过程的自动化更加复杂;

(3)预热控制较困难。预热程度若不一致,就会降低接头质量的稳定性。

二、闪光对焊的电阻和加热

闪光对焊时的接触电阻Rc即为两工件端面间液体金属过梁的总电阻,其大小取决于同时存在的过梁数及其横断面积。后两项又与工件的横断面积、电流密度和两工件的接近速度有关。随着这三者的增大,同时存在的过梁数及其横截面积增大,Rc将减小。闪光对焊的Rc比电阻对焊大得多,并且存在于整个闪光阶段,虽然其电阻值逐渐减小,但始终大于工件的内部电阻,直到顶锻开始瞬间Rc才完全消失。图14-5是闪光对焊时Rc、2Rω和R变化的一般规律。Rc逐渐减小是由于在闪光过程中,随着端面温度的升高,工件接近速度逐渐增大,过梁的数目和尺寸都随之增大的缘故。

由于Rc大并且存在整个闪光阶段,所以闪光对焊时接头的加热主要靠Rc。

三、闪光对焊的焊接循环、工艺参数和工件准备

1、焊接循环

闪光对焊的焊接循环14-7所示,图中复位时间是指动夹钳由松开工件至回到原位的时间。预热方法有两种:电阻预热和闪光预热,图中(b)采用的是电阻预热。

2、工艺参数

闪光对焊的主要参数有:伸出长度、闪光电流、闪光流量、闪光速度、顶锻流量、顶锻速度、顶锻压力、顶锻电流、夹钳夹持力等。图14-8是连续闪光对焊各流量和伸出长度的示意图。下面介绍各工艺参数对焊接质量的影响及选用原则:

(1)伸长长度l0 和电阻对焊一样,l0影响沿工件轴向的温度分布和接头的塑性变形。此外,随着l0的增大,使焊接回路的阻抗增大,需用功率也要增大。一般情况下,棒材和厚臂管材l0=(0.7-1.0)d,d为圆棒料的直径或方棒料的边长。

对于薄板(δ=1-4mm)为了顶锻时不失稳,一般取l0=(4-5)δ。

不同金属对焊时,为了使两工件上的温度分布一致,通常是导电性和导热性差的金属l0应较小。表1是不同金属闪光对焊时的l0参考值。

(2)闪光电流If和顶锻电流Iu If取决于工件的断面积和闪光所需要的电流密度jf。jf的大小又与被焊金属的物理性能、闪光速度、工件断面的面积和形状,以及端面的加热状态有关。在闪光过程中,随着vf的逐渐提高和接触电阻Rc的逐渐减小,jf将增大。顶锻时,Rc迅速消失,电流将急剧增大到顶锻电流Iu。
QQ图片20170309095740.jpg

当焊接大截面钢件时,为增加工件的加热深度,应采用较小的闪光速度,所用的平均jf一般不超过5A/mm2。表2为断面积200-1000mm2工件闪光对焊时jf和ju的参考值。
QQ图片20170309095843.jpg

电流的大小取决于焊接变压器的空载电压U20。因此,在实际生产中一般是给定次级空载电压。选定U20时,除应考虑焊机回路的阻抗,阻抗大时,U20应相应提高。焊接大断面工件时,有时采用分级调节次级电压的方法,开始时,用较高的U20来激发闪光,然后降低到适应值。

(3)闪光流量δf 选择闪光流量,应满足在闪光结束时整个工件端面有一熔化金属层,同时在一定深度上达到塑性变形温度。如果δf 过小,则不能满足上述要求,会影响焊接质量。δf过大,又会浪费金属材料、降低生产率。在选择δf时还应考虑是否有预热,因预热闪光对焊的δf可比连续闪光对焊小30-50%。

(4)闪光速度vf 足够大的闪光速度才能保证闪光的强烈和稳定。但vf过大会使加热区过窄,增加塑性变形的困难,同时,由于需要的焊接电流增加,会增大过梁爆破后的火口深度,因此将会降低接头质量。选择vf时还应考虑下列因素:1)被焊材料的成分和性能。含有易氧化元素多的或导电导热性好的材料,vf应较大。例如焊奥氏体不锈钢和铝合金时要比焊低碳钢时大;

2)是否有预热。有预热时容易激发闪光,因而可提高vf。

3)顶锻前应有强烈闪光。vf应较大,以保证在端面上获得均匀的金属层。

(5)顶锻流量δu δu 影响液体金属的排除和塑性变形的大小。δu 过小时,液态金属残留在接口中,易形成疏松、缩孔、裂纹等缺陷;δu 过大时,也会因晶纹弯曲严重,降低接头的冲击韧度。δu 根据工件断面积选取,随着断面积的增大而增大。

顶锻时,为防止接口氧化,在端面接口闭合前不立刻切断电流,因此顶锻流量应包括两部分----有电流顶锻留量和无电流顶锻留量,前者为后者的0.5-1倍。

(6)顶锻速度vu 为避免接口区因金属冷却而造成液态金属排除及塑性金属变形的困难,以及防止端面金属氧化,顶锻速度越快越好。最小的顶锻速度取决于金属的性能。焊接奥氏体钢的最小顶锻速度均为焊接珠光体钢的两倍。导热性好的金属(如铝合金)焊接时需要很高的顶锻速度(150-200mm/s)。对于同一种金属,接口区温度梯度大的,由于接头的冷却速度快,也需要提高顶锻速度。

(7)顶锻压力Fu Fu通常以单位面积的压力,即顶锻压强来表示。顶锻压强的大小应保证能挤出接口内的液态金属,并在接头处产生一定的塑性变形。顶锻压强过小,则变形不足,接头强度下降;顶锻压强过大,则变形量过大,晶纹弯曲严重,又会降低接头冲击韧度。

顶锻压强的大小取决于金属性能、温度分布特点、顶锻留量和速度、工件断面形状等因素。高温强度大的金属要求大的顶锻压强。增大温度梯度就要提高顶锻压强。由于高的闪光速度会导致温度梯度增大,因此焊接导热性好的金属(铜、铝合金)时,需要大的顶锻压强(150-400Mpa)。

(8)预热闪光对焊参数 除上述工艺参数外,还应考虑预热温度和预热时间。

预热温度根据工件断面和材料性能选择,焊接低碳钢时,一般不超过700-900度。随着工件断面积增大,预热温度应相应提高。

预热时间与焊机功率、工件断面大小及金属的性能有关,可在较大范围内变化。预热时间取决于所需预热温度。

预热过程中,预热造成的缩短量很小,不作为工艺参数来规定。

(9)夹钳的夹持力Fc必须保证工件在顶锻时不打滑 Fc与顶锻压力Fu和工件与夹钳间的摩擦系数f有关,他们的关系是:Fc≥Fu/2f。通常F0=(1.5-4.0)Fu,断面紧凑的低碳钢取下限,冷轧不锈钢板取上限。当夹具上带有顶撑装置时,加紧力可以大大降低,此时Fc=0.5Fu就足够了。

3、工件准备

闪光对焊的工件准备包括:端面几何形状、毛坯端头的加工和表面清理。

闪光对焊时,两工件对接面的几何形状和尺寸应基本一致。否则将不能保证两工件的加热和塑性变形一致,从而将会影响接头质量。在生产中,圆形工件直径的差别不应超过15%,方形工件和管形工件不应超过10%。

在闪光对焊大断面工件时,最好将一个工件的端部倒角,使电流密度增大,以便于激光闪发。这样就可以不用预热或闪光初期提高次级电压。

对焊毛坯端头的加工可以在剪床、冲床、车床上进行,也可以用等离子或气焰切割,然后清除端面。

闪光对焊时,因端部金属在闪光时被烧掉,故对端面清理要求不甚严格。但对夹钳和工件接触面的清理要求,应和电阻对焊一样。

四、常用金属的闪光对焊

所有钢和有色金属几乎都可以闪光对焊,但要获得优质接头,还需根据金属的有关特性,采取必要的工艺措施。现分析如下:

(1)导电导热性 对于导电导热性好的金属,应采用较大的比功率和闪光速度,较短的焊接时间。

(2)高温强度 对于高温强度高的金属,应采用增大温塑性区的宽度,采用较大的顶锻力。

(3)结晶温度区间 结晶温度区间越大,半熔化区越宽,应采用较大的顶锻压力和顶锻留量,以便把半溶化区中的熔化金属全部排挤进去,以免留在接头中引起缩孔、疏松和裂纹等缺陷。(4)热敏感性 常见的有两种情况,第一种是淬火钢,焊后接头易产生淬火组织,使硬度增高、塑性降低,严重时会产生淬火裂纹。淬火钢通常采用加热区宽的预热闪光对焊,焊后采用缓慢冷却和回火等措施。第二种是经冷作强化的金属(如奥氏体不锈钢),焊接时接头和热影响区发生软化,使接头强度降低。焊接此类金属通常采用较大的闪光速度和顶锻压力,以尽量缩小软化区和减轻软化程度。

(5)氧化性 接头中的氧化物夹杂对接头质量有严重危害,因此,防止氧化和排除氧化是提高接头质量的关键。金属的成分不同,其氧化性的生成也不同。若生成氧化物的熔点低于被焊金属,这时氧化物有较好的流动性,顶锻时容易被排挤出来。若生成氧化物的熔点高于被焊金属,如SiO2、Al2O3、Cr2O3等,就必须在被焊金属还处在溶化状态时,才有可能将他们排出。因此,在焊接含有较多硅、铝、铬、一类元素的合金钢时,应该采取严格的工艺措施,彻底排除氧化物。

下面介绍几种常用金属材料闪光对焊的特点:

1、碳素钢的闪光对焊

这类材料具有电阻系数高,加热时碳元素的氧化为接口提供保护性气氛CO和CO2,不含有生成高熔点氧化物的元素等优点。因而都属于焊接性较好的材料。

随着钢中的含碳量的增加,电阻系数增大、结晶区间、高温强度及淬硬倾向都随之增大。因而需要相应增加顶锻压强和顶锻留量。为了减轻淬火的影响。可采用预热闪光对焊,并进行焊后热处理。

碳素钢闪光对焊时,由于碳向加热端面扩散并被强烈氧化,以及顶锻时,半溶化区内含碳量高的溶化金属被挤出,所以在接头处形成含碳量低的贫碳层(呈白色,也称亮带)。贫碳层的宽度随着钢含量的提高、预热时间的加长而增宽;随着含碳量的增大和气体介质氧化倾向的减弱而变窄。采用长时间的热处理可以消除贫碳层。

用得最多的是碳素钢闪光对焊。只要焊接条件选择适当,一般不会出现困难。甚至对溶焊来说比较难焊的铸铁也是一样。

铸铁通常采用预热闪光对焊,用连续闪光对焊容易形成白口。由于含碳量很高,闪光时产生大量的CO和CO2保护气氛,自保护作用较强,即使在工艺参数波动很大时,在接口中也只有少量氧化夹杂物。

2、合金钢的闪光对焊

合金元素含量对钢性能的影响和应采取的工艺措施如下:

1)钢中的铝、铬、硅、钼等元素易生成高熔点氧化物,应增大闪光和顶锻速度,以减少其氧化。

2)合金元素含量增加,高温强度提高,应增加顶锻压强。

3)对于珠光体钢,合金元素增加,淬火倾向性就增大,应采取防止淬火脆化的措施。

下表是碳素钢和合金钢闪光对焊工艺参数的参考值。
QQ图片20170309100004.jpg

低合金钢的焊接特点与中碳钢相似,具有淬硬倾向,应采用相应的热处理方法。这类钢的高温强度大,易生成氧化物夹杂,需要采用较高的顶锻压强,较高的闪光和顶锻速度。

高碳合金钢除具有高碳钢的特点外,还含有一定数量的合金元素。由于含碳量高,结晶温度区间宽,接口处的半熔区就较宽,如果顶锻压力不足,塑性变形量不够,残留在半溶化区内的液态金属将形成疏松组织。还因含有合金元素,会形成高熔点氧化物夹杂。因此,需要较高的闪光和顶锻速度,较大的顶锻压强和顶锻留量。奥氏体钢的主要合金元素是Cr和Ni,这种钢具有高温强度高,导电和导热性差、熔点低(与低碳钢相比),又有大量易形成高熔点氧化物的合金元素(如Cr)。因此,要求有大的顶锻压强,高的闪光和顶锻速度。高的闪光速度可以减小加热区,可有效地防止热影响区晶粒急剧长大和抗腐蚀性的降低。

3、铝及其合金的闪光对焊

这类材料具有导电导热性好,熔点低,易氧化且氧化物熔点高、塑性温度区窄等特点,给焊接带来困难。

铝合金对焊的焊接性较差,工艺参数选择不当时,极易产生氧化夹杂物、疏松等缺陷,使接头强度和塑性急剧降低。闪光对焊时,必须采用很高的闪光和顶锻速度、大的顶锻留量和强迫形成的顶锻模式。所需比功率也要比钢件大得多。

4、铜及其合金的闪光对焊

铜的导热性比铝好,熔点较高,因而比铝要难焊的多。纯铜闪光对焊时,很难在端面形成液态金属层和保持稳定的闪光过程,也很难获得良好的塑性温度区。为此,焊接时需要很高的最后闪光速度、顶锻速度和顶锻压强。

铜合金(如黄铜、青铜)的对焊比纯铜容易。黄铜对焊时由于锌的蒸发而使接头性能下降,为了减少锌的蒸发,也应采用很高的最后闪光速度、顶锻速度和顶锻压强。

 
771 浏览

焊接热影响区的性能,这个对焊接接头很重要,学习了

其它类 牛顿 2017-03-06 10:33 发表了文章 来自相关话题

(1)焊接热影响区的硬化

焊接热影响区的硬度主要决定于被焊钢种的化学成分和冷却条件,其实质是反应不同金相组织的性能。由于硬度试验比较方便,因此,常用热影响区(一般在熔合区)的最高硬度Hmax判断热影响区的性能,它可以间接预测热影响区的韧性、脆性和抗裂性等。近年来,尾巴HAZ的Hmax作为评定焊接性的重要标志。应当指出,即使同一组织,也有不同的硬度。这与钢的含碳量、合金成分及冷却条件有关。

(2)焊接热影响区的脆化

焊接热影响区的脆化常常是引起焊接接头开裂和脆性破坏的主要原因。目前其脆化的形式有粗晶脆化、析出脆化、组织转变脆化、热应变时效脆化、氢脆以及石墨脆化等。
① 粗晶脆化。在热循环的作用下,焊接接头的熔合线附近和过热区将发生晶粒粗化。晶粒粗大严重影响组织的脆性。一般来讲,晶粒越粗,则脆性转变温度越高。

② 析出脆化。在时效或回火过程中,其过饱和固溶体中将析出碳化物、氮化物、金属间化合物及其他亚稳定的中间相等。由于这些新相的析出,使金属或合金的强度、硬度和脆性提高,这种现象称为析出脆化。

③ 组织脆化。焊接HAZ中由于出现脆硬组织而产生的脆化称为组织脆化。对于常用的低碳低合金高强钢,焊接HAZ的组织脆化主要是M-A组元、上贝氏体、粗大的魏氏组织等造成的。但对含碳量较高的钢(一般≥0.2%),则组织脆化主要是由高碳马氏体引起的。

④ HAZ的热应变时效脆化。在制造过程中要对焊接结构进行加工,如下料、剪切、冷变成型、气割、焊接和其他热加工等。由这些加工引起的局部应变、塑性变形对焊接HAZ脆化有很大的影响,由此而引起的脆化称为热应变时效脆化。应变时效脆化大体上可分为静应变时效脆化和动应变时效脆化两类。通常说的“蓝脆性”就属于动应变时效现象。
(3)焊接HAZ的韧化

焊接HAZ在组织和性能上是一个非均匀体,特别是熔合区和粗晶区易产生脆化,是整个焊接接头的薄弱地带。因此,应采取措施提高焊接HAZ的韧性。根据研究,HAZ的韧化可采用以下两方面的措施。

① 控制组织。对低合金钢,应控制含碳量,使合金元素的体系为低碳微量多种合金元素的强化体系。这样,在焊接的冷却条件下,使HAZ分布有弥散强化质点,在组织上能获得低碳马氏体、下贝氏体和针状铁素体等韧性较好的组织。另外,应尽量控制晶界偏析。

② 韧化处理。对于一些重要的结构,常采用焊后热处理来改善接头的性能。但是对一些大型而复杂的结构,即使要采用局部热处理也是困难的。合理制定焊接工艺,正确地选择焊接线能量和预热、后热温度是提高焊接韧性的有效措施。

此外,还有许多能提高HAZ韧性的途径。如细晶粒钢采用控制工艺,进一步细化铁素体的晶粒,也会提高材质的韧性。冶金精炼技术可使钢中的杂质(S、P、O、N等)含量极低。这些措施使得钢材的人行道为提高,从而也提高了焊接HAZ的韧性。

(4)焊接HAZ的软化

对于焊前经冷作硬化或热处理强化的金属或合金,在焊接热影响区一般均会产生不同程度的矢强现象,最典型的是经过调制处理的高强钢和具有沉淀强化及弥散强化的合金,焊后在热影响区产生的软化或矢强。

焊接调质钢时,HAZ的软化程度与母材焊前热处理状态有关。母材焊接前调质处理的回火温度越低,即强化程度越大,则焊后的软化程度越严重。大量实验研究表明,不同焊接方法和不同焊接线能量时,HAZ中软化最明显的部位,是温度处于A1-A3之间的区段。 查看全部
(1)焊接热影响区的硬化

焊接热影响区的硬度主要决定于被焊钢种的化学成分和冷却条件,其实质是反应不同金相组织的性能。由于硬度试验比较方便,因此,常用热影响区(一般在熔合区)的最高硬度Hmax判断热影响区的性能,它可以间接预测热影响区的韧性、脆性和抗裂性等。近年来,尾巴HAZ的Hmax作为评定焊接性的重要标志。应当指出,即使同一组织,也有不同的硬度。这与钢的含碳量、合金成分及冷却条件有关。

(2)焊接热影响区的脆化

焊接热影响区的脆化常常是引起焊接接头开裂和脆性破坏的主要原因。目前其脆化的形式有粗晶脆化、析出脆化、组织转变脆化、热应变时效脆化、氢脆以及石墨脆化等。
① 粗晶脆化。在热循环的作用下,焊接接头的熔合线附近和过热区将发生晶粒粗化。晶粒粗大严重影响组织的脆性。一般来讲,晶粒越粗,则脆性转变温度越高。

② 析出脆化。在时效或回火过程中,其过饱和固溶体中将析出碳化物、氮化物、金属间化合物及其他亚稳定的中间相等。由于这些新相的析出,使金属或合金的强度、硬度和脆性提高,这种现象称为析出脆化。

③ 组织脆化。焊接HAZ中由于出现脆硬组织而产生的脆化称为组织脆化。对于常用的低碳低合金高强钢,焊接HAZ的组织脆化主要是M-A组元、上贝氏体、粗大的魏氏组织等造成的。但对含碳量较高的钢(一般≥0.2%),则组织脆化主要是由高碳马氏体引起的。

④ HAZ的热应变时效脆化。在制造过程中要对焊接结构进行加工,如下料、剪切、冷变成型、气割、焊接和其他热加工等。由这些加工引起的局部应变、塑性变形对焊接HAZ脆化有很大的影响,由此而引起的脆化称为热应变时效脆化。应变时效脆化大体上可分为静应变时效脆化和动应变时效脆化两类。通常说的“蓝脆性”就属于动应变时效现象。
(3)焊接HAZ的韧化

焊接HAZ在组织和性能上是一个非均匀体,特别是熔合区和粗晶区易产生脆化,是整个焊接接头的薄弱地带。因此,应采取措施提高焊接HAZ的韧性。根据研究,HAZ的韧化可采用以下两方面的措施。

① 控制组织。对低合金钢,应控制含碳量,使合金元素的体系为低碳微量多种合金元素的强化体系。这样,在焊接的冷却条件下,使HAZ分布有弥散强化质点,在组织上能获得低碳马氏体、下贝氏体和针状铁素体等韧性较好的组织。另外,应尽量控制晶界偏析。

② 韧化处理。对于一些重要的结构,常采用焊后热处理来改善接头的性能。但是对一些大型而复杂的结构,即使要采用局部热处理也是困难的。合理制定焊接工艺,正确地选择焊接线能量和预热、后热温度是提高焊接韧性的有效措施。

此外,还有许多能提高HAZ韧性的途径。如细晶粒钢采用控制工艺,进一步细化铁素体的晶粒,也会提高材质的韧性。冶金精炼技术可使钢中的杂质(S、P、O、N等)含量极低。这些措施使得钢材的人行道为提高,从而也提高了焊接HAZ的韧性。

(4)焊接HAZ的软化

对于焊前经冷作硬化或热处理强化的金属或合金,在焊接热影响区一般均会产生不同程度的矢强现象,最典型的是经过调制处理的高强钢和具有沉淀强化及弥散强化的合金,焊后在热影响区产生的软化或矢强。

焊接调质钢时,HAZ的软化程度与母材焊前热处理状态有关。母材焊接前调质处理的回火温度越低,即强化程度越大,则焊后的软化程度越严重。大量实验研究表明,不同焊接方法和不同焊接线能量时,HAZ中软化最明显的部位,是温度处于A1-A3之间的区段。
553 浏览

焊接铝材的几个实操技巧,

其它类 牛顿 2017-03-06 10:24 发表了文章 来自相关话题

看点01 铝材焊接5大技巧
1.最适合焊接铝材的是拉丝式焊枪,如果你无法使用这种焊枪的话,尽量使用最短的焊枪以便保持焊枪的笔直;只能使用氩气作为保护气体;在焊接铝材(自动管焊机)的时候只能使用推枪手法。
2.如果你发现有送丝问题,可以试一试尺寸比焊丝大一号的导电头。
3.焊铝时最常用的焊丝是较软的标准焊丝。而另一种则要硬一些(较容易送丝),它主要用于硬度和强度要求更高的焊接操作中。
4.在焊接开始前要做好铝材表面氧化层的清除工作,使用专用的不锈钢刷来清除氧化层。
5.焊接结束时填充好弧坑以防止裂缝。一个办法就是在焊后将焊枪在熔池中停留数秒。
看点02 铝型材焊接注意事项
1.铝材的焊接
焊接特性:铝及铝合金具有导热性强而热容量大,线胀系数大,熔点低和高温强度小等特点,焊接难度大,应采取一定的措施,才能保证焊接质量。
管件及焊丝的清理,焊丝及破口两侧50mm范围内表面用丙酮清洗干净,用不锈钢丝刷刷去表面氧化膜,露出金属光泽,清理好的破口必须在2小时内焊接,清理好的焊丝放入未用的筒内,必须在8小时内用完,否则重新处理。
钨棒选用铈钨棒,氩气钝质不小于99.96%,且含水量不应大于50mg/m³。
环境温度不低于5℃,否则应预热至100~200℃方可施焊,相对湿度控。
2.需要的设备
你至少需要拥有一台价值4000美元的焊机和高超的焊接技巧来焊接铝材;不需要练习就可以完成效果很好的焊接作业;你需要购买适合铝材焊接的昂贵焊枪。
3.成功焊接铝材
事实是,在经过训练,使用适合的焊接设备,进行正确的参数设置情况下,紧凑的小型MIG焊机也能进行临时的铝材焊接作业。你将能使用MIG焊机来完成你家里各种的材料焊接,诸如烧烤架、后院储藏间、船坞,甚至装饰零件。即使是经常焊接钢材的家庭焊接狂热者,也会觉得去焊接铝材是一项极大的挑战。原因是:铝丝非常软,送丝相当困难。另外,通常用于钢材的焊丝直径和焊机设置可能不适合焊接铝材。
看点03 要成功焊接铝材,明白如下问题
1.我需要什么样的设备?
首先需要做出的决定是需要什么种类的设备来达到目的。要牢记,115伏的送丝机能够处理22到12号规格的焊接作业,并且在适当预热的情况下,你也许能够焊接1/8英寸厚的材料。但要小心的是,预热的最大值要被限制在华氏250度以内。另一个是230伏的机器能焊接从22号规格一直到3/16英寸的材料。适当的预热能把范围提升到1/4英寸。如果你需要焊接各种不同厚度的板材,就该考虑230伏的焊机。
记住,如果你准备做很有规则的铝材加工,你将会需要重型焊机。115和230伏的紧凑型MIG焊机可以进行偶尔的铝材焊接,但是并不值得推荐用他们去做复杂繁重的铝材焊接,否则就应该考虑输出超过200安培的焊接设备。在你确定了输入电压之后,选择焊机时另一个通常你会问到的问题是,我是需要连续式的电压调节型号,还是抽头线圈式的型号?持续的电压调节型号让你能够在机器的电压限制内无级调节设置电压,适应性更强,能更有效的调整、进行精确的控制。这样就允许你在焊接作业的时候更容易调整。
2.什么样的保护气体?
MIG焊接铝材和焊接钢材所需要的保护气体是不同的。焊接铝材,应该选择100%含量的氩气,然而钢材焊接要求混合气体或者100%的二氧化碳气体。好消息是,我们不需要什么特殊的设备——你现有的调整器(除了二氧化碳调整器以外)和气管都能被用在纯净的或者混合的气体。
3.设置什么样的极性?
所有的MIG焊接,包括铝材焊接,都需要正极的焊条,而药芯焊接工艺却是典型的使用负极焊条。如果你要把焊机在不同的工艺中切换,先确定切换极性。这是新手通常会犯的错误。
4.应该购买什么样的铝合金焊条?
如果你试图在焊接铝材时使用钢焊条的话,将会得到很差的效果。相反,我们推荐的是,紧凑MIG焊机使用限制在0.035英寸直径的4043铝合金填充金属。5336的铝合金焊条则可能通常被推荐给零售商和分销商,因为这种焊丝更硬,更容易送丝。
然而,使用这种送丝焊机的话,用5356铝合金通常电流不足以达到较好的焊接效果。尽管4030较软,在遵循下面描述的适当步骤也能保证取得较好的送丝性能。不要使用其他直径的焊丝。特别要避免0.030英寸的焊丝(送丝相当困难)和3/64英寸的焊丝(紧凑的小型焊机无法提供足够的电流来可靠的熔化这个直径的焊丝)。
5.我该如何设置我的焊机来焊接铝材?
既然你知道了需要焊机的种类和性能/局限性,下一个非常重要的步骤就是如何设置参数了,遵循以下的提示:购买一套铝材送丝工具;注意送丝在焊接铝材的时候显得更加重要,所以强烈推荐购买一套专用铝材送丝工具,一套工具将包含以下物品:
非金属衬管——设计来最大程度减小送
丝摩擦2.U型槽驱动滚轮——用来避免教软的铝丝断裂或者变形,这些驱动滚轮不会象V型槽滚轮一样刮伤铝丝。使用V型槽滚轮的话,会让焊丝刮花衬管造成堵塞,引起送丝故障。
进口和出口引导装置——设计来避免焊丝刮伤
接触头——使用在铝材焊接的接触头有更大直径的开口,因为在铝丝升温时,产生的膨胀比钢材多。因此,铝丝专用接触头的尺寸在小得足够保持电接触的同时,又足够允许膨胀。
装载焊丝到焊机
这里有一个正确装入铝丝的窍门,(同样适用钢制焊丝)对装载铝焊丝、避免焊接时的故障非常重要。用一只手安全的握住焊丝轴确保其不会松开,一但你拆开了玻璃纸包装,就用另一只手握住焊丝松开的一头——在将其放入驱动滚轮之前不要松手。缺少经验的人通常会没握紧松开的一头,而导致整捆焊丝开始松脱散开。如果这样的事发生了,将无法补救,焊接作业也会受很大的影响——你不得不购买另一捆焊丝。
设置焊丝刹车的松紧度
松紧度只需要保证焊丝刚刚不会松脱即可,但是不能太紧,否则会造成对焊丝的拖拽。
要正确的设置,先将松紧度调到最低,然后装上焊丝,让其通过驱动滚轮,如果除了装焊丝的滚轴在动,而其他部件都停止了的话,就说明不够紧。操作时要小心,因为过紧会造成加在焊丝上的力过多。另外,焊丝用完的最后几圈无法送丝时不要紧张;通常是因为焊丝太硬而不容易松脱。
设置驱动滚轮松紧度
这可能是整个设置程序中最重要的一步。专家推荐的是,将丝头以微小的角度位于离绝缘材料表面1英寸的地方。然后,将滚轮松紧度设置在几乎最小。按下焊枪上的开关,观察其运作——在焊丝接触到绝缘材料表面的时候应该滑动。从那一点开始调紧松紧度直到焊丝停止滑动。
再一次的,要注意,太紧会导致焊丝的断裂。这意味着焊丝停留在焊枪里,而焊丝驱动滚轮仍然在转动,最终的结果是焊丝跑出滚轮后断裂,或者积压倒退导致焊丝乱成一团,包括引导衬管,焊枪衬管等。要记住,在你按上述内容设置滚轮松紧度的时候,按下焊枪的开关,送出的焊丝是烫的,所以总是戴上质量好的焊接手套。
确保良好的电源连接
第一步,焊接用的夹具应该安全的夹在焊接工件没有上漆和污染的区域。要清洁工件,使用除脂溶剂来清除所有的油脂。在进行焊接前还要确保工件表面的干燥。同时,不要在有可燃材料在附近的情况下焊接,诸如溶剂或者油漆的容器。第二步,用干净的不锈钢丝刷将铝材的表面氧化物清除干净。

定位非常重要
在焊接的时候,尽量保持焊枪电缆的笔直,以最大程度减少对较软铝丝的送丝约束。焊枪电缆线的弯曲会导致焊丝打结,造成很差的送丝。 查看全部
看点01 铝材焊接5大技巧
1.最适合焊接铝材的是拉丝式焊枪,如果你无法使用这种焊枪的话,尽量使用最短的焊枪以便保持焊枪的笔直;只能使用氩气作为保护气体;在焊接铝材(自动管焊机)的时候只能使用推枪手法。
2.如果你发现有送丝问题,可以试一试尺寸比焊丝大一号的导电头。
3.焊铝时最常用的焊丝是较软的标准焊丝。而另一种则要硬一些(较容易送丝),它主要用于硬度和强度要求更高的焊接操作中。
4.在焊接开始前要做好铝材表面氧化层的清除工作,使用专用的不锈钢刷来清除氧化层。
5.焊接结束时填充好弧坑以防止裂缝。一个办法就是在焊后将焊枪在熔池中停留数秒。
看点02 铝型材焊接注意事项
1.铝材的焊接
焊接特性:铝及铝合金具有导热性强而热容量大,线胀系数大,熔点低和高温强度小等特点,焊接难度大,应采取一定的措施,才能保证焊接质量。
管件及焊丝的清理,焊丝及破口两侧50mm范围内表面用丙酮清洗干净,用不锈钢丝刷刷去表面氧化膜,露出金属光泽,清理好的破口必须在2小时内焊接,清理好的焊丝放入未用的筒内,必须在8小时内用完,否则重新处理。
钨棒选用铈钨棒,氩气钝质不小于99.96%,且含水量不应大于50mg/m³。
环境温度不低于5℃,否则应预热至100~200℃方可施焊,相对湿度控。
2.需要的设备
你至少需要拥有一台价值4000美元的焊机和高超的焊接技巧来焊接铝材;不需要练习就可以完成效果很好的焊接作业;你需要购买适合铝材焊接的昂贵焊枪。
3.成功焊接铝材
事实是,在经过训练,使用适合的焊接设备,进行正确的参数设置情况下,紧凑的小型MIG焊机也能进行临时的铝材焊接作业。你将能使用MIG焊机来完成你家里各种的材料焊接,诸如烧烤架、后院储藏间、船坞,甚至装饰零件。即使是经常焊接钢材的家庭焊接狂热者,也会觉得去焊接铝材是一项极大的挑战。原因是:铝丝非常软,送丝相当困难。另外,通常用于钢材的焊丝直径和焊机设置可能不适合焊接铝材。
看点03 要成功焊接铝材,明白如下问题
1.我需要什么样的设备?
首先需要做出的决定是需要什么种类的设备来达到目的。要牢记,115伏的送丝机能够处理22到12号规格的焊接作业,并且在适当预热的情况下,你也许能够焊接1/8英寸厚的材料。但要小心的是,预热的最大值要被限制在华氏250度以内。另一个是230伏的机器能焊接从22号规格一直到3/16英寸的材料。适当的预热能把范围提升到1/4英寸。如果你需要焊接各种不同厚度的板材,就该考虑230伏的焊机。
记住,如果你准备做很有规则的铝材加工,你将会需要重型焊机。115和230伏的紧凑型MIG焊机可以进行偶尔的铝材焊接,但是并不值得推荐用他们去做复杂繁重的铝材焊接,否则就应该考虑输出超过200安培的焊接设备。在你确定了输入电压之后,选择焊机时另一个通常你会问到的问题是,我是需要连续式的电压调节型号,还是抽头线圈式的型号?持续的电压调节型号让你能够在机器的电压限制内无级调节设置电压,适应性更强,能更有效的调整、进行精确的控制。这样就允许你在焊接作业的时候更容易调整。
2.什么样的保护气体?
MIG焊接铝材和焊接钢材所需要的保护气体是不同的。焊接铝材,应该选择100%含量的氩气,然而钢材焊接要求混合气体或者100%的二氧化碳气体。好消息是,我们不需要什么特殊的设备——你现有的调整器(除了二氧化碳调整器以外)和气管都能被用在纯净的或者混合的气体。
3.设置什么样的极性?
所有的MIG焊接,包括铝材焊接,都需要正极的焊条,而药芯焊接工艺却是典型的使用负极焊条。如果你要把焊机在不同的工艺中切换,先确定切换极性。这是新手通常会犯的错误。
4.应该购买什么样的铝合金焊条?
如果你试图在焊接铝材时使用钢焊条的话,将会得到很差的效果。相反,我们推荐的是,紧凑MIG焊机使用限制在0.035英寸直径的4043铝合金填充金属。5336的铝合金焊条则可能通常被推荐给零售商和分销商,因为这种焊丝更硬,更容易送丝。
然而,使用这种送丝焊机的话,用5356铝合金通常电流不足以达到较好的焊接效果。尽管4030较软,在遵循下面描述的适当步骤也能保证取得较好的送丝性能。不要使用其他直径的焊丝。特别要避免0.030英寸的焊丝(送丝相当困难)和3/64英寸的焊丝(紧凑的小型焊机无法提供足够的电流来可靠的熔化这个直径的焊丝)。
5.我该如何设置我的焊机来焊接铝材?
既然你知道了需要焊机的种类和性能/局限性,下一个非常重要的步骤就是如何设置参数了,遵循以下的提示:购买一套铝材送丝工具;注意送丝在焊接铝材的时候显得更加重要,所以强烈推荐购买一套专用铝材送丝工具,一套工具将包含以下物品:
非金属衬管——设计来最大程度减小送
丝摩擦2.U型槽驱动滚轮——用来避免教软的铝丝断裂或者变形,这些驱动滚轮不会象V型槽滚轮一样刮伤铝丝。使用V型槽滚轮的话,会让焊丝刮花衬管造成堵塞,引起送丝故障。
进口和出口引导装置——设计来避免焊丝刮伤
接触头——使用在铝材焊接的接触头有更大直径的开口,因为在铝丝升温时,产生的膨胀比钢材多。因此,铝丝专用接触头的尺寸在小得足够保持电接触的同时,又足够允许膨胀。
装载焊丝到焊机
这里有一个正确装入铝丝的窍门,(同样适用钢制焊丝)对装载铝焊丝、避免焊接时的故障非常重要。用一只手安全的握住焊丝轴确保其不会松开,一但你拆开了玻璃纸包装,就用另一只手握住焊丝松开的一头——在将其放入驱动滚轮之前不要松手。缺少经验的人通常会没握紧松开的一头,而导致整捆焊丝开始松脱散开。如果这样的事发生了,将无法补救,焊接作业也会受很大的影响——你不得不购买另一捆焊丝。
设置焊丝刹车的松紧度
松紧度只需要保证焊丝刚刚不会松脱即可,但是不能太紧,否则会造成对焊丝的拖拽。
要正确的设置,先将松紧度调到最低,然后装上焊丝,让其通过驱动滚轮,如果除了装焊丝的滚轴在动,而其他部件都停止了的话,就说明不够紧。操作时要小心,因为过紧会造成加在焊丝上的力过多。另外,焊丝用完的最后几圈无法送丝时不要紧张;通常是因为焊丝太硬而不容易松脱。
设置驱动滚轮松紧度
这可能是整个设置程序中最重要的一步。专家推荐的是,将丝头以微小的角度位于离绝缘材料表面1英寸的地方。然后,将滚轮松紧度设置在几乎最小。按下焊枪上的开关,观察其运作——在焊丝接触到绝缘材料表面的时候应该滑动。从那一点开始调紧松紧度直到焊丝停止滑动。
再一次的,要注意,太紧会导致焊丝的断裂。这意味着焊丝停留在焊枪里,而焊丝驱动滚轮仍然在转动,最终的结果是焊丝跑出滚轮后断裂,或者积压倒退导致焊丝乱成一团,包括引导衬管,焊枪衬管等。要记住,在你按上述内容设置滚轮松紧度的时候,按下焊枪的开关,送出的焊丝是烫的,所以总是戴上质量好的焊接手套。
确保良好的电源连接
第一步,焊接用的夹具应该安全的夹在焊接工件没有上漆和污染的区域。要清洁工件,使用除脂溶剂来清除所有的油脂。在进行焊接前还要确保工件表面的干燥。同时,不要在有可燃材料在附近的情况下焊接,诸如溶剂或者油漆的容器。第二步,用干净的不锈钢丝刷将铝材的表面氧化物清除干净。

定位非常重要
在焊接的时候,尽量保持焊枪电缆的笔直,以最大程度减少对较软铝丝的送丝约束。焊枪电缆线的弯曲会导致焊丝打结,造成很差的送丝。
647 浏览

焊接材料选用原则

设计类 尘灰 2017-02-28 09:26 发表了文章 来自相关话题

焊接材料选用原则
 

焊接材料选用原则
 
580 浏览

焊接机器人使用大全,能解决大问题

智能科技类 心如热火 2017-02-05 14:33 发表了文章 来自相关话题

机器人焊接采用的是富氩混合气体保护焊,焊接过程中出现的焊接缺陷一般有焊偏、咬边、气孔等几种,具体分析如下:

(1)出现焊偏可能为焊接的位置不正确或焊枪寻找时出现问题。这时,要考虑TCP(焊枪中心点位置)是否准确,并加以调整。如果频繁出现这种情况就要检查一下机器人各轴的零位置,重新校零予以修正。

(2)出现咬边可能为焊接参数选择不当、焊枪角度或焊枪位置不对,可适当调整功率的大小来改变焊接参数,调整焊枪的姿态以及焊枪与工件的相对位置。

(3)出现气孔可能为气体保护差、工件的底漆太厚或者保护气不够干燥,进行相应的调整就可以处理。

(4)飞溅过多可能为焊接参数选择不当、气体组分原因或焊丝外伸长度太长,可适当调整功率的大小来改变焊接参数,调节气体配比仪来调整混合气体比例,调整焊枪与工件的相对位置。

(5)焊缝结尾处冷却后形成一弧坑,编程时在工作步中添加埋弧坑功能,可以将其填满。
焊接机器人常见故障及解决方法

(1)发生撞枪。可能是由于工件组装发生偏差或焊枪的TCP不准确,可检查装配情况或修正焊枪TCP。

(2)出现电弧故障,不能引弧。可能是由于焊丝没有接触到工件或工艺参数太小,可手动送丝,调整焊枪与焊缝的距离,或者适当调节工艺参数。

(3)保护气监控报警。冷却水或保护气供给存有故障,检查冷却水或保护气管路。

如何保障工件质量

作为示教一再现式机器人,要求工件的装配质量和精度必须有较好的一致性。

应用焊接机器人应严格控制零件的制备质量,提高焊件装配精度。零件表面质量、坡口尺寸和装配精度将影响焊缝跟踪效果。可以从以下几方面来提高零件制备质量和焊件装配精度。

(1)编制焊接机器人专用的焊接工艺,对零件尺寸、焊缝坡口、装配尺寸进行严格的工艺规定。一般零件和坡口尺寸公差控制在±0.8mm,装配尺寸误差控制在±1.5mm以内,焊缝出现气孔和咬边等焊接缺陷机率可大幅度降低。

(2)采用精度较高的装配工装以提高焊件的装配精度。

(3)焊缝应清洗干净,无油污、铁锈、焊渣、割渣等杂物,允许有可焊性底漆。否则,将影响引弧成功率。定位焊由焊条焊改为气体保护焊,同时对点焊部位进行打磨,避免因定位焊残留的渣壳或气孔,从而避免电弧的不稳甚至飞溅的产生。
焊接机器人对焊丝的要求

机器人根据需要可选用桶装或盘装焊丝。为了减少更换焊丝的频率,机器人应选用桶装焊丝,但由于采用桶装焊丝,送丝软管很长,阻力大,对焊丝的挺度等质量要求较高。当采用镀铜质量稍差的焊丝时,焊丝表面的镀铜因摩擦脱落会造成导管内容积减小,高速送丝时阻力加大,焊丝不能平滑送出,产生抖动,使电弧不稳,影响焊缝质量。严重时,出现卡死现象,使机器人停机,故要及时清理焊丝导管。

编程技巧总结

(1)选择合理的焊接顺序。以减小焊接变形、焊枪行走路径长度来制定焊接顺序。

(2)焊枪空间过渡要求移动轨迹较短、平滑、安全。

(3)优化焊接参数。为了获得最佳的焊接参数,制作工作试件进行焊接试验和工艺评定。

(4)合理的变位机位置、焊枪姿态、焊枪相对接头的位置。工件在变位机上固定之后,若焊缝不是理想的位置与角度,就要求编程时不断调整变位机,使得焊接的焊缝按照焊接顺序逐次达到水平位置,同时,要不断调整机器人各轴位置,合理地确定焊枪相对接头的位置、角度与焊丝伸出长度。工件的位置确定之后,焊枪相对接头的位置通过编程者的双眼观察,难度较大。这就要求编程者善于总结积累经验。
(5)及时插入清枪程序。编写一定长度的焊接程序后,应及时插入清枪程序,可以防止焊接飞溅堵塞焊接喷嘴和导电嘴,保证焊枪的清洁,提高喷嘴的寿命,确保可靠引弧、减少焊接飞溅。

(6)编制程序一般不能一步到位,要在机器人焊接过程中不断检验和修改程序,调整焊接参数及焊枪姿态等,才会形成一个好程序。

运行成本及管理分析

进口机器人配件价格较高,应努力从各方面降低运用成本。润滑油可以在国内寻找性能、效用相同的低价替代品。焊接过程加强维护,提高易耗件如喷嘴、导电嘴等的使用寿命。另外,对机器人系统进行预防性的维护,可以有效提高元器件的使用寿命。

高素质的管理人员、技术人员和操作人员是机器人充分发挥效率的必要条件。一个企业焊接机器人使用的好坏,很大程度在于人,因此要保证有一支稳定的工作队伍。
  查看全部
机器人焊接采用的是富氩混合气体保护焊,焊接过程中出现的焊接缺陷一般有焊偏、咬边、气孔等几种,具体分析如下:

(1)出现焊偏可能为焊接的位置不正确或焊枪寻找时出现问题。这时,要考虑TCP(焊枪中心点位置)是否准确,并加以调整。如果频繁出现这种情况就要检查一下机器人各轴的零位置,重新校零予以修正。

(2)出现咬边可能为焊接参数选择不当、焊枪角度或焊枪位置不对,可适当调整功率的大小来改变焊接参数,调整焊枪的姿态以及焊枪与工件的相对位置。

(3)出现气孔可能为气体保护差、工件的底漆太厚或者保护气不够干燥,进行相应的调整就可以处理。

(4)飞溅过多可能为焊接参数选择不当、气体组分原因或焊丝外伸长度太长,可适当调整功率的大小来改变焊接参数,调节气体配比仪来调整混合气体比例,调整焊枪与工件的相对位置。

(5)焊缝结尾处冷却后形成一弧坑,编程时在工作步中添加埋弧坑功能,可以将其填满。
焊接机器人常见故障及解决方法

(1)发生撞枪。可能是由于工件组装发生偏差或焊枪的TCP不准确,可检查装配情况或修正焊枪TCP。

(2)出现电弧故障,不能引弧。可能是由于焊丝没有接触到工件或工艺参数太小,可手动送丝,调整焊枪与焊缝的距离,或者适当调节工艺参数。

(3)保护气监控报警。冷却水或保护气供给存有故障,检查冷却水或保护气管路。

如何保障工件质量

作为示教一再现式机器人,要求工件的装配质量和精度必须有较好的一致性。

应用焊接机器人应严格控制零件的制备质量,提高焊件装配精度。零件表面质量、坡口尺寸和装配精度将影响焊缝跟踪效果。可以从以下几方面来提高零件制备质量和焊件装配精度。

(1)编制焊接机器人专用的焊接工艺,对零件尺寸、焊缝坡口、装配尺寸进行严格的工艺规定。一般零件和坡口尺寸公差控制在±0.8mm,装配尺寸误差控制在±1.5mm以内,焊缝出现气孔和咬边等焊接缺陷机率可大幅度降低。

(2)采用精度较高的装配工装以提高焊件的装配精度。

(3)焊缝应清洗干净,无油污、铁锈、焊渣、割渣等杂物,允许有可焊性底漆。否则,将影响引弧成功率。定位焊由焊条焊改为气体保护焊,同时对点焊部位进行打磨,避免因定位焊残留的渣壳或气孔,从而避免电弧的不稳甚至飞溅的产生。
焊接机器人对焊丝的要求

机器人根据需要可选用桶装或盘装焊丝。为了减少更换焊丝的频率,机器人应选用桶装焊丝,但由于采用桶装焊丝,送丝软管很长,阻力大,对焊丝的挺度等质量要求较高。当采用镀铜质量稍差的焊丝时,焊丝表面的镀铜因摩擦脱落会造成导管内容积减小,高速送丝时阻力加大,焊丝不能平滑送出,产生抖动,使电弧不稳,影响焊缝质量。严重时,出现卡死现象,使机器人停机,故要及时清理焊丝导管。

编程技巧总结

(1)选择合理的焊接顺序。以减小焊接变形、焊枪行走路径长度来制定焊接顺序。

(2)焊枪空间过渡要求移动轨迹较短、平滑、安全。

(3)优化焊接参数。为了获得最佳的焊接参数,制作工作试件进行焊接试验和工艺评定。

(4)合理的变位机位置、焊枪姿态、焊枪相对接头的位置。工件在变位机上固定之后,若焊缝不是理想的位置与角度,就要求编程时不断调整变位机,使得焊接的焊缝按照焊接顺序逐次达到水平位置,同时,要不断调整机器人各轴位置,合理地确定焊枪相对接头的位置、角度与焊丝伸出长度。工件的位置确定之后,焊枪相对接头的位置通过编程者的双眼观察,难度较大。这就要求编程者善于总结积累经验。
(5)及时插入清枪程序。编写一定长度的焊接程序后,应及时插入清枪程序,可以防止焊接飞溅堵塞焊接喷嘴和导电嘴,保证焊枪的清洁,提高喷嘴的寿命,确保可靠引弧、减少焊接飞溅。

(6)编制程序一般不能一步到位,要在机器人焊接过程中不断检验和修改程序,调整焊接参数及焊枪姿态等,才会形成一个好程序。

运行成本及管理分析

进口机器人配件价格较高,应努力从各方面降低运用成本。润滑油可以在国内寻找性能、效用相同的低价替代品。焊接过程加强维护,提高易耗件如喷嘴、导电嘴等的使用寿命。另外,对机器人系统进行预防性的维护,可以有效提高元器件的使用寿命。

高素质的管理人员、技术人员和操作人员是机器人充分发挥效率的必要条件。一个企业焊接机器人使用的好坏,很大程度在于人,因此要保证有一支稳定的工作队伍。
 
930 浏览

史上最全,常用焊缝符号表示方法,机械工程师必备

智能制造类 Leader 2016-11-08 16:43 发表了文章 来自相关话题

焊接最基本的资料,建议每位机械工程师都收藏一下,对于自身学习还是公司内部员工的培训,都是一份难得的资料。

































































 
 
 
来源:1号机器人

智造家提供
  查看全部
焊接最基本的资料,建议每位机械工程师都收藏一下,对于自身学习还是公司内部员工的培训,都是一份难得的资料。

































































 
 
 
来源:1号机器人

智造家提供
 
667 浏览

焊接材料选用原则

设计类 心的开始 2016-10-14 09:39 发表了文章 来自相关话题

焊接材料选用原则,见附件
焊接材料选用原则,见附件
660 浏览

IPC-610-D(中文版)[1]

管理类 Amazing 2016-09-26 17:59 发表了文章 来自相关话题

本标准是由IPC 产品保证委员会制订的关于电子组件质量目视检验接受条件的文件。

1.1 范围
1.2 目的
1.3 特殊设计
1.4 术语和定义
1.4.1 分级
1.4.2 验收条件
1.4.2.1 目标条件
1.4.2.2 可接受条件
1.4.2.3 缺陷条件
1.4.2.4 制程警示条件
1.4.2.5 多种情况结合
1.4.2.6 未指明的情况
1.4.3 板面方向
1.4.3.1 主面
1.4.3.2 辅面
1.4.3.3 焊接起始面
1.4.3.4 焊接终止面
1.4.4 冷焊连接
1.4.5 电气间隙
1.4.6 高电压
1.4.7 侵入式焊接
1.4.8 浸析
1.4.9 弯月形涂层(元器件)
1.4.10 焊锡膏内插针
1.4.11 导线直径
1.5 例图与插图
1.6 检查方法
1.7 尺寸的鉴定
1.8 放大装置和照明
 
 
来源:网络 查看全部

本标准是由IPC 产品保证委员会制订的关于电子组件质量目视检验接受条件的文件。

1.1 范围
1.2 目的
1.3 特殊设计
1.4 术语和定义
1.4.1 分级
1.4.2 验收条件
1.4.2.1 目标条件
1.4.2.2 可接受条件
1.4.2.3 缺陷条件
1.4.2.4 制程警示条件
1.4.2.5 多种情况结合
1.4.2.6 未指明的情况
1.4.3 板面方向
1.4.3.1 主面
1.4.3.2 辅面
1.4.3.3 焊接起始面
1.4.3.4 焊接终止面
1.4.4 冷焊连接
1.4.5 电气间隙
1.4.6 高电压
1.4.7 侵入式焊接
1.4.8 浸析
1.4.9 弯月形涂层(元器件)
1.4.10 焊锡膏内插针
1.4.11 导线直径
1.5 例图与插图
1.6 检查方法
1.7 尺寸的鉴定
1.8 放大装置和照明
 
 
来源:网络