本月累计签到次数:

今天获取 积分

BMS

BMS

2637 浏览

15种电池管理系统(BMS)常见故障案例分析

机械自动化类 善思惟 2016-11-03 11:10 发表了文章 来自相关话题

        电池管理系统(BATTERY MANAGEMENT SYSTEM),俗称电池保姆或电池管家,是连接车载动力电池和电动汽车的重要纽带,其主要功能包括:电池物理参数实时监测;电池状态估计;在线诊断与预警;充、放电与预充控制;均衡管理和热管理等。电池管理系统(BMS)主要就是为了能够提高电池的利用率,防止电 查看全部
        电池管理系统(BATTERY MANAGEMENT SYSTEM),俗称电池保姆或电池管家,是连接车载动力电池和电动汽车的重要纽带,其主要功能包括:电池物理参数实时监测;电池状态估计;在线诊断与预警;充、放电与预充控制;均衡管理和热管理等。电池管理系统(BMS)主要就是为了能够提高电池的利用率,防止电
1868 浏览

干货 | 动力电池系统(电芯/BMS/PACK)失效模式分析

机械自动化类 朱迪 2016-10-24 10:26 发表了文章 来自相关话题

       随着电动汽车的快速发展,如何解决电动汽车所带来的安全问题,又成为汽车行业新的话题和难点。动力电池系统作为电动汽车的动力来源(或动力来源之一),其安全性和可靠性已成为公众最为关注的焦点。



研究动力电池系统的失效模式对提高电池寿命、电动车辆的安全性和可靠性、降低电动车使用成本有至关重要的意义。本文从动 查看全部
       随着电动汽车的快速发展,如何解决电动汽车所带来的安全问题,又成为汽车行业新的话题和难点。动力电池系统作为电动汽车的动力来源(或动力来源之一),其安全性和可靠性已成为公众最为关注的焦点。



研究动力电池系统的失效模式对提高电池寿命、电动车辆的安全性和可靠性、降低电动车使用成本有至关重要的意义。本文从动
2398 浏览

回归常态,独立电池Pack和BMS企业的价值几何

机械自动化类 嗡班匝萨埵吽 2016-09-26 13:00 发表了文章 来自相关话题

 在中国,独立的电池Pack企业有没有价值?独立的BMS企业有没有价值?这两类企业,会有几家活下来?在中国,独立的电池Pack企业有没有价值?独立的BMS企业有没有价值?这两类企业,会有几家活下来?

先看看2016年电动乘用车销售相关背景。乘联会的统计数据比较粗略,不过根据工信部的免购置税、车辆公告和工信部2016 查看全部
 在中国,独立的电池Pack企业有没有价值?独立的BMS企业有没有价值?这两类企业,会有几家活下来?在中国,独立的电池Pack企业有没有价值?独立的BMS企业有没有价值?这两类企业,会有几家活下来?

先看看2016年电动乘用车销售相关背景。乘联会的统计数据比较粗略,不过根据工信部的免购置税、车辆公告和工信部2016
1601 浏览

中国电池管理系统(BMS)行业最新调研及市场战略研究报告(2012-2016年)

设计类 黄金手表 2016-09-23 17:34 发表了文章 来自相关话题

中国电池管理系统(BMS)行业最新调研及市场战略研究报告(2012-2016年)
中国电池管理系统(BMS)行业最新调研及市场战略研究报告(2012-2016年)
1470 浏览

BMS电池管理系统主要厂商产品系列

设计类 加菲猫的旅行 2016-09-22 17:48 发表了文章 来自相关话题

BMS电池管理系统主要厂商产品系列
BMS电池管理系统主要厂商产品系列
1750 浏览

BMS电池管理系统使用说明书user's-guide-of-BMS

机械自动化类 加菲猫的旅行 2016-09-22 17:39 发表了文章 来自相关话题

BMS电池管理系统使用说明书user's-guide-of-BMS
BMS电池管理系统使用说明书user's-guide-of-BMS
1953 浏览

电池管理系统(BMS)故障分析方法及常见故障案例

机械自动化类 嗡班匝萨埵吽 2016-09-21 10:32 发表了文章 来自相关话题

    电池管理系统(BATTERY MANAGEMENT SYSTEM),俗称电池保姆或电池管家,是连接车载动力电池和电动汽车的重要纽带,其主要功能包括:电池物理参数实时监测;电池状态估计;在线诊断与预警;充、放电与预充控制;均衡管理和热管理等。电池管理系统(BMS)主要就是为了能够提高电池的利用率,防止电池出现过 查看全部
    电池管理系统(BATTERY MANAGEMENT SYSTEM),俗称电池保姆或电池管家,是连接车载动力电池和电动汽车的重要纽带,其主要功能包括:电池物理参数实时监测;电池状态估计;在线诊断与预警;充、放电与预充控制;均衡管理和热管理等。电池管理系统(BMS)主要就是为了能够提高电池的利用率,防止电池出现过
2060 浏览

主动均衡是必要吗?

设计类 邓紫棋 2016-08-10 13:41 发表了文章 来自相关话题

常听到国内不少BMS公司大力宣扬自研发的BMS主动均衡大电流,高效率等等,并以此为亮点大力加以推广之。余亦尝因己不思上进从未曾涉足而惴惴不安。

做过几个BMS, 无一例外都是采用国内最传统最简单的被动均衡放电方式。也喜欢接触一些厂商学习琢磨一些主动均衡方案,最终并未尝试。原因有二,其一:被其高昂的成本、复杂的开关矩 查看全部
常听到国内不少BMS公司大力宣扬自研发的BMS主动均衡大电流,高效率等等,并以此为亮点大力加以推广之。余亦尝因己不思上进从未曾涉足而惴惴不安。

做过几个BMS, 无一例外都是采用国内最传统最简单的被动均衡放电方式。也喜欢接触一些厂商学习琢磨一些主动均衡方案,最终并未尝试。原因有二,其一:被其高昂的成本、复杂的开关矩
1967 浏览

BMS需求超百亿,你必须了解的核心技术和市场潜力!

机械自动化类 功夫熊猫 2016-07-15 13:12 发表了文章 来自相关话题

BMS的市场增量主要来自两方面,对汽车用BMS的需求在很长一段时间将是增量市场,再就是以往以铅酸电池为动力的低速电动车市场。
最近有投资机构在向本人询问BMS投资这块的问题,处于风口上的BMS专业厂家科列技术更是在新三板的估值超过30亿元,资本市场对其关注度只增不减。在此本人查阅了一些资料,以及对市场的预测,对BMS 查看全部
BMS的市场增量主要来自两方面,对汽车用BMS的需求在很长一段时间将是增量市场,再就是以往以铅酸电池为动力的低速电动车市场。
最近有投资机构在向本人询问BMS投资这块的问题,处于风口上的BMS专业厂家科列技术更是在新三板的估值超过30亿元,资本市场对其关注度只增不减。在此本人查阅了一些资料,以及对市场的预测,对BMS
2637 浏览

15种电池管理系统(BMS)常见故障案例分析

机械自动化类 善思惟 2016-11-03 11:10 发表了文章 来自相关话题

        电池管理系统(BATTERY MANAGEMENT SYSTEM),俗称电池保姆或电池管家,是连接车载动力电池和电动汽车的重要纽带,其主要功能包括:电池物理参数实时监测;电池状态估计;在线诊断与预警;充、放电与预充控制;均衡管理和热管理等。电池管理系统(BMS)主要就是为了能够提高电池的利用率,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。
       电池管理系统不但与电池密切联系,也与整车系统有着各种联系,在所有故障当中,相对其他系统,电池管理系统的故障是相对较高的,也是较难处理的。本文总结了处理电池管理系统常见故障的案例分析,供整车、电池、管理系统厂家相关人员参考。
1、系统供电后整个系统不工作
可能原因
供电异常、线束短路或是断路、DCDC无电压输出。
故障排除
检查外部电源给管理系统供电是否正常,是否能达到管理系统要求的最低工作电压,看外部电源是否有限流设置,导致给管理系统的供电功率不足;可以调整外部电源,使其满足管理系统的用电要求;检查管理系统的线束是否有短路或是断路,对线束进行修改,使其工作正常;外部供电和线束都正常,则查看管理系统中给整个系统供电的DCDC是否有电压输出;如有异常可更换坏的DCDC模块。
2、BMS 不能与ECU 通信
可能原因
BMU(主控模块)未工作、CAN 信号线断线
故障排除
检查 BMU 的电源 12V/24V 是否正常;检查 CAN 信号传输线是否退针或插头未插;监听 CAN 端口数据,是否能够收到 BMS 或者ECU 数据包。
3、BMS 与 ECU通信不稳定
可能原因
外部 CAN 总线匹配不良、总线分支过长
故障排除
检测总线匹配电阻是否正确;匹配位置是否正确,分支是否过长。
4、BMS 内部通信不稳定
可能原因
通信线插头松动、CAN 走线不规范、BSU 地址有重复。
故障排除
检测接线是否松动;检测总线匹配电阻是否正确,匹配位置是否正确,分支是否过长;检查 BSU 地址是否重复。
5、绝缘检测报警
可能原因
电池或驱动器漏电。、绝缘模块检测线接错。
故障排除
使用 BDU 显示模块查看绝缘检测数据,查看电池母线电压,负母线对地电压是否正常;使用绝缘摇表分别测量母线和驱动器对地绝缘电阻。
6、上电后主继电器不吸合
可能原因
负载检测线未接、预充继电器开路、预充电阻开路。
故障排除
使用 BDU 显示模块查看母线电压数据,查看电池母线电压,负载母线电压是否正常;检查预充过程中负载母线电压是否有上升。
7、采集模块数据为 0
可能原因
采集模块采集线断开、采集模块损坏。
故障排除
重新拔插模块接线,在采集线接头处测量电池电压是否正常,在温度传感器线插头处测量阻值是否正常。
8、电池电流数据错误
可能原因
霍尔信号线插头松动、霍尔传感器损坏、采集模块损坏。
故障排除
重新拔插电流霍尔传感器信号线;检查霍尔传感器电源是否正常,信号输出是否正常;更换采集模块。
9、电池温差过大
可能原因
散热风扇插头松动,散热风扇故障。
故障排除
重新拔插风扇插头线;给风扇单独供电,检查风扇是否正常。
10、电池温度过高或过低
可能原因
散热风扇插头松动,散热风扇故障,温度探头损坏。
故障排除
重新拔插风扇插头线;给风扇单独供电,检查风扇是否正常;检查电池实际温度是否过高或过低;测量温度探头内阻。
11、继电器动作后系统报错
可能原因
继电器辅助触点断线,继电器触点粘连
故障排除
重新拔插线束;用万用表测量辅助触点通断状态是否正确。
12、不能使用充电机充电
可能原因
充电机与 BMS 通信不正常
故障排除
更换一台充电机或 BMS,以确认是 BMS 故障还是充电机故障;检查 BMS 充电端口的匹配电阻是否正常。
13、车载仪表无 BMS 数据显示
可能原因
主控模块线束连接异常
故障排除
检查主控模块线束是否有连接完备,是否有汽车正常的低压工作电压,该模块是否工作正常
14、部分电池箱的检测数据丢失
可能原因
整车部分接插件可能接触不良,或者BMS从控模块不能正常工作
故障排除
检查接插件接触情况,或更换BMS模块;。
15、SOC异常
现象:SOC在系统工作过程中变化幅度很大,或者在几个数值之间反复跳变;在系统充放电过程中,SOC有较大偏差;SOC一直显示固定数值不变。
可能原因
电流不校准;电流传感器型号与主机程序不匹配;电池长期未深度充放电;数据采集模块采集跳变,导致SOC进行自动校准;
SOC校准的两个条件:1)达到过充保护;2)平均电压达到xxV以上。客户电池一致性较差,过充时,第二个条件无法达到。通过显示查看电池的剩余容量和总容量;电流传感器未正确连接;
故障排除:
在触摸屏配置页面里校准电流;改主机程序或者更换电流传感器;
对电池进行一次深度充放电;更换数据采集模块,对系统SOC进行手动校准,建议客户每周做一次深度充放电;修改主机程序,根据客户实际情况调整“平均电压达到xxV以上”这个条件中的xxV。设置正确的电池总容量和剩余容量的;正确连接电流传感器,使其工作正常;
 
 
来源:网络 查看全部
        电池管理系统(BATTERY MANAGEMENT SYSTEM),俗称电池保姆或电池管家,是连接车载动力电池和电动汽车的重要纽带,其主要功能包括:电池物理参数实时监测;电池状态估计;在线诊断与预警;充、放电与预充控制;均衡管理和热管理等。电池管理系统(BMS)主要就是为了能够提高电池的利用率,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。
       电池管理系统不但与电池密切联系,也与整车系统有着各种联系,在所有故障当中,相对其他系统,电池管理系统的故障是相对较高的,也是较难处理的。本文总结了处理电池管理系统常见故障的案例分析,供整车、电池、管理系统厂家相关人员参考。
1、系统供电后整个系统不工作
可能原因
供电异常、线束短路或是断路、DCDC无电压输出。
故障排除
检查外部电源给管理系统供电是否正常,是否能达到管理系统要求的最低工作电压,看外部电源是否有限流设置,导致给管理系统的供电功率不足;可以调整外部电源,使其满足管理系统的用电要求;检查管理系统的线束是否有短路或是断路,对线束进行修改,使其工作正常;外部供电和线束都正常,则查看管理系统中给整个系统供电的DCDC是否有电压输出;如有异常可更换坏的DCDC模块。
2、BMS 不能与ECU 通信
可能原因
BMU(主控模块)未工作、CAN 信号线断线
故障排除
检查 BMU 的电源 12V/24V 是否正常;检查 CAN 信号传输线是否退针或插头未插;监听 CAN 端口数据,是否能够收到 BMS 或者ECU 数据包。
3、BMS 与 ECU通信不稳定
可能原因
外部 CAN 总线匹配不良、总线分支过长
故障排除
检测总线匹配电阻是否正确;匹配位置是否正确,分支是否过长。
4、BMS 内部通信不稳定
可能原因
通信线插头松动、CAN 走线不规范、BSU 地址有重复。
故障排除
检测接线是否松动;检测总线匹配电阻是否正确,匹配位置是否正确,分支是否过长;检查 BSU 地址是否重复。
5、绝缘检测报警
可能原因
电池或驱动器漏电。、绝缘模块检测线接错。
故障排除
使用 BDU 显示模块查看绝缘检测数据,查看电池母线电压,负母线对地电压是否正常;使用绝缘摇表分别测量母线和驱动器对地绝缘电阻。
6、上电后主继电器不吸合
可能原因
负载检测线未接、预充继电器开路、预充电阻开路。
故障排除
使用 BDU 显示模块查看母线电压数据,查看电池母线电压,负载母线电压是否正常;检查预充过程中负载母线电压是否有上升。
7、采集模块数据为 0
可能原因
采集模块采集线断开、采集模块损坏。
故障排除
重新拔插模块接线,在采集线接头处测量电池电压是否正常,在温度传感器线插头处测量阻值是否正常。
8、电池电流数据错误
可能原因
霍尔信号线插头松动、霍尔传感器损坏、采集模块损坏。
故障排除
重新拔插电流霍尔传感器信号线;检查霍尔传感器电源是否正常,信号输出是否正常;更换采集模块。
9、电池温差过大
可能原因
散热风扇插头松动,散热风扇故障。
故障排除
重新拔插风扇插头线;给风扇单独供电,检查风扇是否正常。
10、电池温度过高或过低
可能原因
散热风扇插头松动,散热风扇故障,温度探头损坏。
故障排除
重新拔插风扇插头线;给风扇单独供电,检查风扇是否正常;检查电池实际温度是否过高或过低;测量温度探头内阻。
11、继电器动作后系统报错
可能原因
继电器辅助触点断线,继电器触点粘连
故障排除
重新拔插线束;用万用表测量辅助触点通断状态是否正确。
12、不能使用充电机充电
可能原因
充电机与 BMS 通信不正常
故障排除
更换一台充电机或 BMS,以确认是 BMS 故障还是充电机故障;检查 BMS 充电端口的匹配电阻是否正常。
13、车载仪表无 BMS 数据显示
可能原因
主控模块线束连接异常
故障排除
检查主控模块线束是否有连接完备,是否有汽车正常的低压工作电压,该模块是否工作正常
14、部分电池箱的检测数据丢失
可能原因
整车部分接插件可能接触不良,或者BMS从控模块不能正常工作
故障排除
检查接插件接触情况,或更换BMS模块;。
15、SOC异常
现象:SOC在系统工作过程中变化幅度很大,或者在几个数值之间反复跳变;在系统充放电过程中,SOC有较大偏差;SOC一直显示固定数值不变。
可能原因
电流不校准;电流传感器型号与主机程序不匹配;电池长期未深度充放电;数据采集模块采集跳变,导致SOC进行自动校准;
SOC校准的两个条件:1)达到过充保护;2)平均电压达到xxV以上。客户电池一致性较差,过充时,第二个条件无法达到。通过显示查看电池的剩余容量和总容量;电流传感器未正确连接;
故障排除:
在触摸屏配置页面里校准电流;改主机程序或者更换电流传感器;
对电池进行一次深度充放电;更换数据采集模块,对系统SOC进行手动校准,建议客户每周做一次深度充放电;修改主机程序,根据客户实际情况调整“平均电压达到xxV以上”这个条件中的xxV。设置正确的电池总容量和剩余容量的;正确连接电流传感器,使其工作正常;
 
 
来源:网络
1868 浏览

干货 | 动力电池系统(电芯/BMS/PACK)失效模式分析

机械自动化类 朱迪 2016-10-24 10:26 发表了文章 来自相关话题

       随着电动汽车的快速发展,如何解决电动汽车所带来的安全问题,又成为汽车行业新的话题和难点。动力电池系统作为电动汽车的动力来源(或动力来源之一),其安全性和可靠性已成为公众最为关注的焦点。






研究动力电池系统的失效模式对提高电池寿命、电动车辆的安全性和可靠性、降低电动车使用成本有至关重要的意义。本文从动力电池系统外在表现失效模式探索和后果进行分析并提出相应处理措施。在动力电池系统设计时考虑各种失效模式以提高动力电池安全性。

动力电池系统通常由电芯、电池管理系统、Pack系统含功能元器件、线束、结构件等相关组建构成。动力电池系统失效模式,可以分为三种不同层级的失效模式,即电芯失效模式、电池管理系统失效模式、Pack系统集成失效模式。

一、电芯失效模式
电芯的失效模式又可分为安全性失效模式和非安全性失效模式。电芯安全性失效主要有以下几点:
1、电芯内部正负极短路
电池内短路是由电芯内部引起的,引起电池内短路的原因有很多,可能是由于电芯生产过程中缺陷导致或是因为长期振动外力导致电芯变形所致。一旦发生严重内短路,无法阻止控制,外部保险不起作用,肯定会发生冒烟或燃烧。

如果遭遇到该情况,我们能做的就是第一时间通知车上人员逃生。对于电池内部短路问题,目前为止电池厂家没有办法在出厂时100%将有可能发生内短路的电芯筛选出来,只能在后期充分做好检测以将发生内短路的概率降低。

2、电池单体漏液

这是非常危险,也是非常常见的失效模式。电动汽车着火的事故很多都是因为电池漏液造成的。电池漏液的有原因有:外力损伤;碰撞、安装不规范造成密封结构被破坏;制造原因:焊接缺陷、封合胶量不足造成密封性能不好等。

电池漏液后整个电池包的绝缘失效,单点绝缘失效问题不大,如果有两点或以上绝缘失效会发生外短路。从实际应用情况来看,软包和塑壳电芯相比金属壳单体更容易发生漏液情况导致绝缘失效。

3、电池负极析锂
 
电池使用不当,过充电、低温充电、大电流充电都会导致电池负极析锂。国内大部分厂家生产的磷酸铁锂或三元电池在0摄氏度以下充电都会发生析锂,0摄氏度以上根据电芯特性只能小电流充电。发生负极析锂后,锂金属不可还原,导致电池容量不可逆衰减。析锂达到一定严重程度,形成锂枝晶,刺穿隔膜发生内短路。所以动力电池在使用时应该严禁低温下进行充电。

4、电芯胀气鼓胀

产生胀气的原因很多,主要是因为电池内部发生副反应产生气体,最为典型的是与水发生副反应。胀气问题可以通过在电芯生产过程严格控制水分可以避免。一旦发生电池胀气就会发生漏液等情况。

以上几种失效模式是非常严重的问题,可能会造成人员伤亡。即使一个电芯使用1、2年没有问题,并不代表这个电芯以后没有问题,使用越久的电池失效的风险越大。

电芯的非安全性失效只是影响使用性能,主要有以下几点:

1、容量一致性差

动力电池的不一致性通常是指一组电池内电池的剩余容量差异过大、电压差异过大,引起电池续航能力变差。引起电池间一致性变差的原因是多个方面的,包括电池的生产制造工艺,电池的存放时间长短,电池组充放电期间的的温度差异,充放电电流大小等。

目前解决方法主要是提高电池的生产制造工艺控制水平,从生产关尽可能保证电池的一致性,使用同一批次电池进行配组。这种方法有一定效果,但无法根治,电池组使用一段时间后一致性差的问题还会出现,电池组发生不一致性问题后,如果不能及时处理,问题会愈加严重,甚至会发生危险。

2、自放电过大

电池制造时杂质造成的微短路所引起的不可逆反应是造成个别电池自放电偏大的最主要原因。在大多电池生产厂家对电池的自放电微小时都可忽略,由于电池在长时间的充放电及搁置过程中,随环境条件发生化学反应,引起电池大自放电现象,这使电池电量降低,性能低下,不能满足使用需求。

3、低温放电容量减少

随着温度的降低,电解液低温性能不好,参与反应不够,电解液电导率降低而导致电池电阻增大,电压平台降低,容量也降低。目前各厂家电池-20度下的放电容量基本在额定容量的70%~75%。低温下电池放电容量减少,且放电性能差,影响电动汽车的使用性能和续驶里程。

4、电池容量衰减

电池容置衰减主要来自于活性锂离子的损失以及电极活性材料的损失。正极活性材料层状结构规整度下降,负极活性材料上沉积钝化膜,石墨化程度降低,隔膜孔隙率下降,导致电池电荷传递阻抗增大。脱嵌锂能力下降,从而导致容量的损失。

电池容量衰减是电池不可避免的问题。但是目前电池厂家应该首要解决前面安全性失效问题和电池一致性问题,在这个基础上再考虑延长电池的循环寿命。

二、BMS失效模式

电池的单体失效不仅和电池本身有关,也和电池管理系统BMS失效有关。BMS失效模式也会造成严重的事故有以下几类:

1、BMS电压检测失效导致电池过充电或过放电

连接、压线过程或接触不良导致电压检测线失效,BMS没有电压信息,充电时该停止时没有停止。电池过充会着火、爆炸,磷酸铁锂过充至5V以上大部分只是冒烟,但是三元电池一旦过充,会发生爆炸。

而且,过充电容易导致锂离子电池中的电解液分解释放出气体,从而导致电池鼓胀,严重的话甚至会冒烟起火;电池过放电会导致电池正极材料分子结构损坏,从而导致充不进去电;同时电池电压过低造成电解液分解,干涸发生析锂,回到电池内短路问题。在系统设计时应该选用可靠的电压采集线,在生产过程中严格管控,杜绝电压采集线的失效。

2、BMS电流检测失效

霍尔传感器失效,BMS采集不到电流,SOC无法计算,偏差大。电流检测失效可能导致充电电流过大。充电电流大,电芯内部发热大,温度超过一定温度,会使隔膜固化容量衰减,严重影响电池寿命。

3、BMS温度检测失效

温度检测失效导致电池工作使用温度过高,电池发生不可逆反应,对电池容量、内阻有很大影响。电芯日历寿命跟温度直接相关,45度时的循环次数是25度时的一半,另外温度过高电池易发生鼓胀、漏液,爆炸等问题,因此在电池使用过程中要严格控制电池的温度在20-45摄氏度之间,除能有效提高电池的使用寿命和可靠性之外还能有效避免电池低温充电析锂造成的短路以及高温热失控。

4、绝缘监测失效

在动力电池系统发生变形或漏液的情况下都会发生绝缘失效,如果BMS没有被检测出来,有可能发生人员触电。因此BMS系统对监测的传感器要求应该是最高的,避免监测系统失效可以极大地提高动力电池的安全性。

5、电磁兼容问题通讯失效

对BMS系统来说,电磁兼容主要考核它抗电磁干扰能力。电磁干扰会导致BMS通讯失效,引发以上几个问题。

6、SOC估算偏差大

目前所有BMS厂家普遍存在的问题,只偏差大小的差别。基本上目前的检验标准要求都是5%以内,大部分厂家BMS应该都很难达到,因为实际使用中SOC误差会越来越大,因为使用环境更加的复杂,影响精度的条件更多。

三、Pack系统集成失效模式

1、汇流排的失效

如果是螺栓连接,在后期使用过程中,螺栓氧化脱落或振动导致螺栓松了都会导致导体连接处产生大量的热,极端情况下会导致动力电池着火。因此绝大部分动力电池系统生产厂家在Pack设计时电芯与电芯连接或模块与模块连接处采用激光焊接,或在连接处增加温度传感器通过检测的手段避免汇流排的失效。

2、动力电池系统主回路连接器失效

动力电池系统高压线通过连接器与外部高压系统相连。连接器性能不可靠,在振动下发生虚接,产生高温烧蚀连接器。一般来说连接器温度超过90度就会发生连接失效。因此在系统设计时连接器需要增加高压互锁功能,或在连接器附进加温度传感器,时刻监测连接器的温度以防止连接器的失效。

3、高压接触器粘黏

接触器有一定次数的带载断开,大部分接触器在大电流带载闭合时烧蚀。在系统设计一般采用双继电器方案,按照先后顺序闭合控制以避免高压接触器粘黏。

4、熔断器过流保护失效

高压系统部件中的熔断器的选型匹配,梯度先断哪个后断哪个需要综合考虑。振动或外部受到碰撞挤压导致动力电池发生形变,密封失效,IP等级降低,因此在系统设计时需要考率电池箱结构的碰撞防护。

根据以上动力电池系统的各种失效模式,科研人员和电池厂商需要通过不断改进工艺和技术提高锂电池电芯的安全性,BMS系统厂商要充分了解电池的性能,基于动力电池的安全设计原则,设计出安全可靠的电池系统,同时正确的使用是保障电池安全性的最终屏障。使用者要正确使用动力电池系统,杜绝机械滥用、热滥用和电滥用,切实提高电动汽车的安全性和可靠性。
 
 
 
来源:网络 查看全部
       随着电动汽车的快速发展,如何解决电动汽车所带来的安全问题,又成为汽车行业新的话题和难点。动力电池系统作为电动汽车的动力来源(或动力来源之一),其安全性和可靠性已成为公众最为关注的焦点。

640.webp_(5)_.jpg


研究动力电池系统的失效模式对提高电池寿命、电动车辆的安全性和可靠性、降低电动车使用成本有至关重要的意义。本文从动力电池系统外在表现失效模式探索和后果进行分析并提出相应处理措施。在动力电池系统设计时考虑各种失效模式以提高动力电池安全性。

动力电池系统通常由电芯、电池管理系统、Pack系统含功能元器件、线束、结构件等相关组建构成。动力电池系统失效模式,可以分为三种不同层级的失效模式,即电芯失效模式、电池管理系统失效模式、Pack系统集成失效模式。

一、电芯失效模式
电芯的失效模式又可分为安全性失效模式和非安全性失效模式。电芯安全性失效主要有以下几点:
1、电芯内部正负极短路
电池内短路是由电芯内部引起的,引起电池内短路的原因有很多,可能是由于电芯生产过程中缺陷导致或是因为长期振动外力导致电芯变形所致。一旦发生严重内短路,无法阻止控制,外部保险不起作用,肯定会发生冒烟或燃烧。

如果遭遇到该情况,我们能做的就是第一时间通知车上人员逃生。对于电池内部短路问题,目前为止电池厂家没有办法在出厂时100%将有可能发生内短路的电芯筛选出来,只能在后期充分做好检测以将发生内短路的概率降低。

2、电池单体漏液

这是非常危险,也是非常常见的失效模式。电动汽车着火的事故很多都是因为电池漏液造成的。电池漏液的有原因有:外力损伤;碰撞、安装不规范造成密封结构被破坏;制造原因:焊接缺陷、封合胶量不足造成密封性能不好等。

电池漏液后整个电池包的绝缘失效,单点绝缘失效问题不大,如果有两点或以上绝缘失效会发生外短路。从实际应用情况来看,软包和塑壳电芯相比金属壳单体更容易发生漏液情况导致绝缘失效。

3、电池负极析锂
 
电池使用不当,过充电、低温充电、大电流充电都会导致电池负极析锂。国内大部分厂家生产的磷酸铁锂或三元电池在0摄氏度以下充电都会发生析锂,0摄氏度以上根据电芯特性只能小电流充电。发生负极析锂后,锂金属不可还原,导致电池容量不可逆衰减。析锂达到一定严重程度,形成锂枝晶,刺穿隔膜发生内短路。所以动力电池在使用时应该严禁低温下进行充电。

4、电芯胀气鼓胀

产生胀气的原因很多,主要是因为电池内部发生副反应产生气体,最为典型的是与水发生副反应。胀气问题可以通过在电芯生产过程严格控制水分可以避免。一旦发生电池胀气就会发生漏液等情况。

以上几种失效模式是非常严重的问题,可能会造成人员伤亡。即使一个电芯使用1、2年没有问题,并不代表这个电芯以后没有问题,使用越久的电池失效的风险越大。

电芯的非安全性失效只是影响使用性能,主要有以下几点:

1、容量一致性差

动力电池的不一致性通常是指一组电池内电池的剩余容量差异过大、电压差异过大,引起电池续航能力变差。引起电池间一致性变差的原因是多个方面的,包括电池的生产制造工艺,电池的存放时间长短,电池组充放电期间的的温度差异,充放电电流大小等。

目前解决方法主要是提高电池的生产制造工艺控制水平,从生产关尽可能保证电池的一致性,使用同一批次电池进行配组。这种方法有一定效果,但无法根治,电池组使用一段时间后一致性差的问题还会出现,电池组发生不一致性问题后,如果不能及时处理,问题会愈加严重,甚至会发生危险。

2、自放电过大

电池制造时杂质造成的微短路所引起的不可逆反应是造成个别电池自放电偏大的最主要原因。在大多电池生产厂家对电池的自放电微小时都可忽略,由于电池在长时间的充放电及搁置过程中,随环境条件发生化学反应,引起电池大自放电现象,这使电池电量降低,性能低下,不能满足使用需求。

3、低温放电容量减少

随着温度的降低,电解液低温性能不好,参与反应不够,电解液电导率降低而导致电池电阻增大,电压平台降低,容量也降低。目前各厂家电池-20度下的放电容量基本在额定容量的70%~75%。低温下电池放电容量减少,且放电性能差,影响电动汽车的使用性能和续驶里程。

4、电池容量衰减

电池容置衰减主要来自于活性锂离子的损失以及电极活性材料的损失。正极活性材料层状结构规整度下降,负极活性材料上沉积钝化膜,石墨化程度降低,隔膜孔隙率下降,导致电池电荷传递阻抗增大。脱嵌锂能力下降,从而导致容量的损失。

电池容量衰减是电池不可避免的问题。但是目前电池厂家应该首要解决前面安全性失效问题和电池一致性问题,在这个基础上再考虑延长电池的循环寿命。

二、BMS失效模式

电池的单体失效不仅和电池本身有关,也和电池管理系统BMS失效有关。BMS失效模式也会造成严重的事故有以下几类:

1、BMS电压检测失效导致电池过充电或过放电

连接、压线过程或接触不良导致电压检测线失效,BMS没有电压信息,充电时该停止时没有停止。电池过充会着火、爆炸,磷酸铁锂过充至5V以上大部分只是冒烟,但是三元电池一旦过充,会发生爆炸。

而且,过充电容易导致锂离子电池中的电解液分解释放出气体,从而导致电池鼓胀,严重的话甚至会冒烟起火;电池过放电会导致电池正极材料分子结构损坏,从而导致充不进去电;同时电池电压过低造成电解液分解,干涸发生析锂,回到电池内短路问题。在系统设计时应该选用可靠的电压采集线,在生产过程中严格管控,杜绝电压采集线的失效。

2、BMS电流检测失效

霍尔传感器失效,BMS采集不到电流,SOC无法计算,偏差大。电流检测失效可能导致充电电流过大。充电电流大,电芯内部发热大,温度超过一定温度,会使隔膜固化容量衰减,严重影响电池寿命。

3、BMS温度检测失效

温度检测失效导致电池工作使用温度过高,电池发生不可逆反应,对电池容量、内阻有很大影响。电芯日历寿命跟温度直接相关,45度时的循环次数是25度时的一半,另外温度过高电池易发生鼓胀、漏液,爆炸等问题,因此在电池使用过程中要严格控制电池的温度在20-45摄氏度之间,除能有效提高电池的使用寿命和可靠性之外还能有效避免电池低温充电析锂造成的短路以及高温热失控。

4、绝缘监测失效

在动力电池系统发生变形或漏液的情况下都会发生绝缘失效,如果BMS没有被检测出来,有可能发生人员触电。因此BMS系统对监测的传感器要求应该是最高的,避免监测系统失效可以极大地提高动力电池的安全性。

5、电磁兼容问题通讯失效

对BMS系统来说,电磁兼容主要考核它抗电磁干扰能力。电磁干扰会导致BMS通讯失效,引发以上几个问题。

6、SOC估算偏差大

目前所有BMS厂家普遍存在的问题,只偏差大小的差别。基本上目前的检验标准要求都是5%以内,大部分厂家BMS应该都很难达到,因为实际使用中SOC误差会越来越大,因为使用环境更加的复杂,影响精度的条件更多。

三、Pack系统集成失效模式

1、汇流排的失效

如果是螺栓连接,在后期使用过程中,螺栓氧化脱落或振动导致螺栓松了都会导致导体连接处产生大量的热,极端情况下会导致动力电池着火。因此绝大部分动力电池系统生产厂家在Pack设计时电芯与电芯连接或模块与模块连接处采用激光焊接,或在连接处增加温度传感器通过检测的手段避免汇流排的失效。

2、动力电池系统主回路连接器失效

动力电池系统高压线通过连接器与外部高压系统相连。连接器性能不可靠,在振动下发生虚接,产生高温烧蚀连接器。一般来说连接器温度超过90度就会发生连接失效。因此在系统设计时连接器需要增加高压互锁功能,或在连接器附进加温度传感器,时刻监测连接器的温度以防止连接器的失效。

3、高压接触器粘黏

接触器有一定次数的带载断开,大部分接触器在大电流带载闭合时烧蚀。在系统设计一般采用双继电器方案,按照先后顺序闭合控制以避免高压接触器粘黏。

4、熔断器过流保护失效

高压系统部件中的熔断器的选型匹配,梯度先断哪个后断哪个需要综合考虑。振动或外部受到碰撞挤压导致动力电池发生形变,密封失效,IP等级降低,因此在系统设计时需要考率电池箱结构的碰撞防护。

根据以上动力电池系统的各种失效模式,科研人员和电池厂商需要通过不断改进工艺和技术提高锂电池电芯的安全性,BMS系统厂商要充分了解电池的性能,基于动力电池的安全设计原则,设计出安全可靠的电池系统,同时正确的使用是保障电池安全性的最终屏障。使用者要正确使用动力电池系统,杜绝机械滥用、热滥用和电滥用,切实提高电动汽车的安全性和可靠性。
 
 
 
来源:网络
2398 浏览

回归常态,独立电池Pack和BMS企业的价值几何

机械自动化类 嗡班匝萨埵吽 2016-09-26 13:00 发表了文章 来自相关话题

[摘要] 在中国,独立的电池Pack企业有没有价值?独立的BMS企业有没有价值?这两类企业,会有几家活下来?在中国,独立的电池Pack企业有没有价值?独立的BMS企业有没有价值?这两类企业,会有几家活下来?

先看看2016年电动乘用车销售相关背景。乘联会的统计数据比较粗略,不过根据工信部的免购置税、车辆公告和工信部2016年的统计信息可以大概分析整个行业的情况。根据这些信息的组合可以得到以下这张图:车企为蓝色,其中部分也延伸覆盖电池系统及采购电池系统;深黄色为独立的Pack企业,采购电芯交付给车企;浅蓝色为车企入股的企业;绿色为电芯和电芯延伸的电池Pack企业。





车企、电池组企业和单体企业关系概览





根据这些信息的融合,其实可以定量的估计整个行业的Pack流动过程。

这段时间的政策特点是进行筛选和监控,整车OEM企业受到了补贴政策不确定性的影响,纯电动整车成本压力不小,由于整个电动汽车的物料清单(BOM)结构性不均衡,就使得整个降成本的压力不均衡。

电芯的供给受限于电池规格和已有的白名单选择,马太效应明显。

电池包的成本降幅绝对数额,大于其他传统部件总和的降额(前者可以按千元为单位,后者单个是按照10元为单单位)






Pack是衔接整车、电池、BMS的纽带,电池的大数据通过BMS肯定要掌握在OEM手里,重要是当然,可是OEM才有话语权,pack厂做大了还有可能有一席之地,pack厂肯定要做BMS,OEM肯定要把BMS和车整合,BMS厂家没什么空间,独立的pack企业有价值,只能剩下几家而已,但独立的BMS企业迟早被收购。

从长远来看,如果电池厂注重技术积累,注重人才培养,吸收传统汽车零部件厂的好的经验,就有足够的能力去满足OEM的各种需求,那时单独的BMS厂家就很难过了。未来最有可能发生的情况是:Pack企业参股电芯厂,采购模块或模组,pack自己做,BMS自己做。目前流行的是汽车和电池厂共同成立pack厂。







未来,发改委说只有10家电动汽车企业牌照,加上电芯企业白名单的进一步筛选,电动汽车发展的一个重要趋势就是从跳跃式增长变为常规速度增长,产业本身和资本趋于理性和现实,回归常态,很多讨论需要更现实的从可持续性和盈利模型考虑,结合强烈的降成本需求。
 
 
来源:网络 查看全部
[摘要] 在中国,独立的电池Pack企业有没有价值?独立的BMS企业有没有价值?这两类企业,会有几家活下来?在中国,独立的电池Pack企业有没有价值?独立的BMS企业有没有价值?这两类企业,会有几家活下来?

先看看2016年电动乘用车销售相关背景。乘联会的统计数据比较粗略,不过根据工信部的免购置税、车辆公告和工信部2016年的统计信息可以大概分析整个行业的情况。根据这些信息的组合可以得到以下这张图:车企为蓝色,其中部分也延伸覆盖电池系统及采购电池系统;深黄色为独立的Pack企业,采购电芯交付给车企;浅蓝色为车企入股的企业;绿色为电芯和电芯延伸的电池Pack企业。

57e49e08623d6.jpg

车企、电池组企业和单体企业关系概览

57e49e0861060.png

根据这些信息的融合,其实可以定量的估计整个行业的Pack流动过程。

这段时间的政策特点是进行筛选和监控,整车OEM企业受到了补贴政策不确定性的影响,纯电动整车成本压力不小,由于整个电动汽车的物料清单(BOM)结构性不均衡,就使得整个降成本的压力不均衡。

电芯的供给受限于电池规格和已有的白名单选择,马太效应明显。

电池包的成本降幅绝对数额,大于其他传统部件总和的降额(前者可以按千元为单位,后者单个是按照10元为单单位)

57e49e0857c73.png


Pack是衔接整车、电池、BMS的纽带,电池的大数据通过BMS肯定要掌握在OEM手里,重要是当然,可是OEM才有话语权,pack厂做大了还有可能有一席之地,pack厂肯定要做BMS,OEM肯定要把BMS和车整合,BMS厂家没什么空间,独立的pack企业有价值,只能剩下几家而已,但独立的BMS企业迟早被收购。

从长远来看,如果电池厂注重技术积累,注重人才培养,吸收传统汽车零部件厂的好的经验,就有足够的能力去满足OEM的各种需求,那时单独的BMS厂家就很难过了。未来最有可能发生的情况是:Pack企业参股电芯厂,采购模块或模组,pack自己做,BMS自己做。目前流行的是汽车和电池厂共同成立pack厂。

57e7914cb458a.jpg



未来,发改委说只有10家电动汽车企业牌照,加上电芯企业白名单的进一步筛选,电动汽车发展的一个重要趋势就是从跳跃式增长变为常规速度增长,产业本身和资本趋于理性和现实,回归常态,很多讨论需要更现实的从可持续性和盈利模型考虑,结合强烈的降成本需求。
 
 
来源:网络
1601 浏览

中国电池管理系统(BMS)行业最新调研及市场战略研究报告(2012-2016年)

设计类 黄金手表 2016-09-23 17:34 发表了文章 来自相关话题

中国电池管理系统(BMS)行业最新调研及市场战略研究报告(2012-2016年)
中国电池管理系统(BMS)行业最新调研及市场战略研究报告(2012-2016年)
1470 浏览

BMS电池管理系统主要厂商产品系列

设计类 加菲猫的旅行 2016-09-22 17:48 发表了文章 来自相关话题

BMS电池管理系统主要厂商产品系列
BMS电池管理系统主要厂商产品系列
1750 浏览

BMS电池管理系统使用说明书user's-guide-of-BMS

机械自动化类 加菲猫的旅行 2016-09-22 17:39 发表了文章 来自相关话题

BMS电池管理系统使用说明书user's-guide-of-BMS
BMS电池管理系统使用说明书user's-guide-of-BMS
1953 浏览

电池管理系统(BMS)故障分析方法及常见故障案例

机械自动化类 嗡班匝萨埵吽 2016-09-21 10:32 发表了文章 来自相关话题

    电池管理系统(BATTERY MANAGEMENT SYSTEM),俗称电池保姆或电池管家,是连接车载动力电池和电动汽车的重要纽带,其主要功能包括:电池物理参数实时监测;电池状态估计;在线诊断与预警;充、放电与预充控制;均衡管理和热管理等。电池管理系统(BMS)主要就是为了能够提高电池的利用率,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。
      电池管理系统不但与电池密切联系,也与整车系统有着各种联系,在所有故障当中,相对其他系统,电池管理系统的故障是相对较高的,也是较难处理的。本文总结了处理电池管理系统故障时的一些常用方法和电池管理系统常见故障的案例分析,供整车、电池、管理系统厂家相关人员参考。
BMS故障分析方法





观察法
当系统发生通讯中断或控制异常时,观察系统各个模块是否有报警,显示屏上是否有报警图标,再针对得出的现象一一排查。
故障复现法
车辆在不同的条件下出现的故障是不同的,在条件允许的情况,尽可能在相同条件下让故障复现,对问题点进行确认。
排除法
当系统发生类似干扰现象时,应逐个去除系统中的各个部件,来判断是哪个部分对系统造成影响。
替换法
当某个模块出现温度、电压、控制等异常时,调换相同串数的模块位置,来诊断是模块问题或线束问题,
环境检查法 
当系统出现故障时,如系统无法显示,我们先不要急于进行深入的考虑,因为往往我们会忽略一些细节问题。首先我们应该看看那些显而易见的东西:如有没有接通电源?开关是否已打开?是不是所有的接线都连接上了?或许问题的根源就在其中。
程序升级法
当新的程序烧录后出现不明故障,导致系统控制异常,可烧录前一版程序进行比对,来进行故障的分析处理。
数据分析法
当BMS发生控制或相关故障时,可对BMS存储数据进行分析,对CAN总线中的报文内容进行分析。
常见故障案例分析
1、系统供电后整个系统不工作
可能原因
供电异常、线束短路或是断路、DCDC无电压输出。
故障排除
检查外部电源给管理系统供电是否正常,是否能达到管理系统要求的最低工作电压,看外部电源是否有限流设置,导致给管理系统的供电功率不足;可以调整外部电源,使其满足管理系统的用电要求;检查管理系统的线束是否有短路或是断路,对线束进行修改,使其工作正常;外部供电和线束都正常,则查看管理系统中给整个系统供电的DCDC是否有电压输出;如有异常可更换坏的DCDC模块。
2、BMS 不能与ECU 通信
可能原因
BMU(主控模块)未工作、CAN 信号线断线
故障排除
检查 BMU 的电源 12V/24V 是否正常;检查 CAN 信号传输线是否退针或插头未插;监听 CAN 端口数据,是否能够收到 BMS 或者ECU 数据包。
3、BMS 与 ECU通信不稳定
可能原因
外部 CAN 总线匹配不良、总线分支过长
故障排除
检测总线匹配电阻是否正确;匹配位置是否正确,分支是否过长。
4、BMS 内部通信不稳定
可能原因
通信线插头松动、CAN 走线不规范、BSU 地址有重复。
故障排除
检测接线是否松动;检测总线匹配电阻是否正确,匹配位置是否正确,分支是否过长;检查 BSU 地址是否重复。
5、绝缘检测报警
可能原因
电池或驱动器漏电。、绝缘模块检测线接错。
故障排除
使用 BDU 显示模块查看绝缘检测数据,查看电池母线电压,负母线对地电压是否正常;使用绝缘摇表分别测量母线和驱动器对地绝缘电阻。
6、上电后主继电器不吸合
可能原因
负载检测线未接、预充继电器开路、预充电阻开路。
故障排除
使用 BDU 显示模块查看母线电压数据,查看电池母线电压,负载母线电压是否正常;检查预充过程中负载母线电压是否有上升。
7、采集模块数据为 0
可能原因
采集模块采集线断开、采集模块损坏。
故障排除
重新拔插模块接线,在采集线接头处测量电池电压是否正常,在温度传感器线插头处测量阻值是否正常。
8、电池电流数据错误
可能原因
霍尔信号线插头松动、霍尔传感器损坏、采集模块损坏。
故障排除
重新拔插电流霍尔传感器信号线;检查霍尔传感器电源是否正常,信号输出是否正常;更换采集模块。
9、电池温差过大
可能原因
散热风扇插头松动,散热风扇故障。
故障排除
重新拔插风扇插头线;给风扇单独供电,检查风扇是否正常。
10、电池温度过高或过低
可能原因
散热风扇插头松动,散热风扇故障,温度探头损坏。
故障排除
重新拔插风扇插头线;给风扇单独供电,检查风扇是否正常;检查电池实际温度是否过高或过低;测量温度探头内阻。
11、继电器动作后系统报错
可能原因
继电器辅助触点断线,继电器触点粘连
故障排除
重新拔插线束;用万用表测量辅助触点通断状态是否正确。
12、不能使用充电机充电
可能原因
充电机与 BMS 通信不正常
故障排除
更换一台充电机或 BMS,以确认是 BMS 故障还是充电机故障;检查 BMS 充电端口的匹配电阻是否正常。
13、车载仪表无 BMS 数据显示
可能原因
主控模块线束连接异常
故障排除
检查主控模块线束是否有连接完备,是否有汽车正常的低压工作电压,该模块是否工作正常
14、部分电池箱的检测数据丢失
可能原因
整车部分接插件可能接触不良,或者BMS从控模块不能正常工作
故障排除
检查接插件接触情况,或更换BMS模块;。
15、SOC异常
现象:SOC在系统工作过程中变化幅度很大,或者在几个数值之间反复跳变;在系统充放电过程中,SOC有较大偏差;SOC一直显示固定数值不变。
可能原因
电流不校准;电流传感器型号与主机程序不匹配;电池长期未深度充放电;数据采集模块采集跳变,导致SOC进行自动校准;
SOC校准的两个条件:1)达到过充保护;2)平均电压达到xxV以上。客户电池一致性较差,过充时,第二个条件无法达到。通过显示查看电池的剩余容量和总容量;电流传感器未正确连接;
故障排除:
在触摸屏配置页面里校准电流;改主机程序或者更换电流传感器;
对电池进行一次深度充放电;更换数据采集模块,对系统SOC进行手动校准,建议客户每周做一次深度充放电;修改主机程序,根据客户实际情况调整“平均电压达到xxV以上”这个条件中的xxV。设置正确的电池总容量和剩余容量的;正确连接电流传感器,使其工作正常;
 
 
来源:网络 查看全部
    电池管理系统(BATTERY MANAGEMENT SYSTEM),俗称电池保姆或电池管家,是连接车载动力电池和电动汽车的重要纽带,其主要功能包括:电池物理参数实时监测;电池状态估计;在线诊断与预警;充、放电与预充控制;均衡管理和热管理等。电池管理系统(BMS)主要就是为了能够提高电池的利用率,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。
      电池管理系统不但与电池密切联系,也与整车系统有着各种联系,在所有故障当中,相对其他系统,电池管理系统的故障是相对较高的,也是较难处理的。本文总结了处理电池管理系统故障时的一些常用方法和电池管理系统常见故障的案例分析,供整车、电池、管理系统厂家相关人员参考。
BMS故障分析方法
640.webp_(14)_.jpg


观察法
当系统发生通讯中断或控制异常时,观察系统各个模块是否有报警,显示屏上是否有报警图标,再针对得出的现象一一排查。
故障复现法
车辆在不同的条件下出现的故障是不同的,在条件允许的情况,尽可能在相同条件下让故障复现,对问题点进行确认。
排除法
当系统发生类似干扰现象时,应逐个去除系统中的各个部件,来判断是哪个部分对系统造成影响。
替换法
当某个模块出现温度、电压、控制等异常时,调换相同串数的模块位置,来诊断是模块问题或线束问题,
环境检查法 
当系统出现故障时,如系统无法显示,我们先不要急于进行深入的考虑,因为往往我们会忽略一些细节问题。首先我们应该看看那些显而易见的东西:如有没有接通电源?开关是否已打开?是不是所有的接线都连接上了?或许问题的根源就在其中。
程序升级法
当新的程序烧录后出现不明故障,导致系统控制异常,可烧录前一版程序进行比对,来进行故障的分析处理。
数据分析法
当BMS发生控制或相关故障时,可对BMS存储数据进行分析,对CAN总线中的报文内容进行分析。
常见故障案例分析
1、系统供电后整个系统不工作
可能原因
供电异常、线束短路或是断路、DCDC无电压输出。
故障排除
检查外部电源给管理系统供电是否正常,是否能达到管理系统要求的最低工作电压,看外部电源是否有限流设置,导致给管理系统的供电功率不足;可以调整外部电源,使其满足管理系统的用电要求;检查管理系统的线束是否有短路或是断路,对线束进行修改,使其工作正常;外部供电和线束都正常,则查看管理系统中给整个系统供电的DCDC是否有电压输出;如有异常可更换坏的DCDC模块。
2、BMS 不能与ECU 通信
可能原因
BMU(主控模块)未工作、CAN 信号线断线
故障排除
检查 BMU 的电源 12V/24V 是否正常;检查 CAN 信号传输线是否退针或插头未插;监听 CAN 端口数据,是否能够收到 BMS 或者ECU 数据包。
3、BMS 与 ECU通信不稳定
可能原因
外部 CAN 总线匹配不良、总线分支过长
故障排除
检测总线匹配电阻是否正确;匹配位置是否正确,分支是否过长。
4、BMS 内部通信不稳定
可能原因
通信线插头松动、CAN 走线不规范、BSU 地址有重复。
故障排除
检测接线是否松动;检测总线匹配电阻是否正确,匹配位置是否正确,分支是否过长;检查 BSU 地址是否重复。
5、绝缘检测报警
可能原因
电池或驱动器漏电。、绝缘模块检测线接错。
故障排除
使用 BDU 显示模块查看绝缘检测数据,查看电池母线电压,负母线对地电压是否正常;使用绝缘摇表分别测量母线和驱动器对地绝缘电阻。
6、上电后主继电器不吸合
可能原因
负载检测线未接、预充继电器开路、预充电阻开路。
故障排除
使用 BDU 显示模块查看母线电压数据,查看电池母线电压,负载母线电压是否正常;检查预充过程中负载母线电压是否有上升。
7、采集模块数据为 0
可能原因
采集模块采集线断开、采集模块损坏。
故障排除
重新拔插模块接线,在采集线接头处测量电池电压是否正常,在温度传感器线插头处测量阻值是否正常。
8、电池电流数据错误
可能原因
霍尔信号线插头松动、霍尔传感器损坏、采集模块损坏。
故障排除
重新拔插电流霍尔传感器信号线;检查霍尔传感器电源是否正常,信号输出是否正常;更换采集模块。
9、电池温差过大
可能原因
散热风扇插头松动,散热风扇故障。
故障排除
重新拔插风扇插头线;给风扇单独供电,检查风扇是否正常。
10、电池温度过高或过低
可能原因
散热风扇插头松动,散热风扇故障,温度探头损坏。
故障排除
重新拔插风扇插头线;给风扇单独供电,检查风扇是否正常;检查电池实际温度是否过高或过低;测量温度探头内阻。
11、继电器动作后系统报错
可能原因
继电器辅助触点断线,继电器触点粘连
故障排除
重新拔插线束;用万用表测量辅助触点通断状态是否正确。
12、不能使用充电机充电
可能原因
充电机与 BMS 通信不正常
故障排除
更换一台充电机或 BMS,以确认是 BMS 故障还是充电机故障;检查 BMS 充电端口的匹配电阻是否正常。
13、车载仪表无 BMS 数据显示
可能原因
主控模块线束连接异常
故障排除
检查主控模块线束是否有连接完备,是否有汽车正常的低压工作电压,该模块是否工作正常
14、部分电池箱的检测数据丢失
可能原因
整车部分接插件可能接触不良,或者BMS从控模块不能正常工作
故障排除
检查接插件接触情况,或更换BMS模块;。
15、SOC异常
现象:SOC在系统工作过程中变化幅度很大,或者在几个数值之间反复跳变;在系统充放电过程中,SOC有较大偏差;SOC一直显示固定数值不变。
可能原因
电流不校准;电流传感器型号与主机程序不匹配;电池长期未深度充放电;数据采集模块采集跳变,导致SOC进行自动校准;
SOC校准的两个条件:1)达到过充保护;2)平均电压达到xxV以上。客户电池一致性较差,过充时,第二个条件无法达到。通过显示查看电池的剩余容量和总容量;电流传感器未正确连接;
故障排除:
在触摸屏配置页面里校准电流;改主机程序或者更换电流传感器;
对电池进行一次深度充放电;更换数据采集模块,对系统SOC进行手动校准,建议客户每周做一次深度充放电;修改主机程序,根据客户实际情况调整“平均电压达到xxV以上”这个条件中的xxV。设置正确的电池总容量和剩余容量的;正确连接电流传感器,使其工作正常;
 
 
来源:网络
2060 浏览

主动均衡是必要吗?

设计类 邓紫棋 2016-08-10 13:41 发表了文章 来自相关话题

常听到国内不少BMS公司大力宣扬自研发的BMS主动均衡大电流,高效率等等,并以此为亮点大力加以推广之。余亦尝因己不思上进从未曾涉足而惴惴不安。

做过几个BMS, 无一例外都是采用国内最传统最简单的被动均衡放电方式。也喜欢接触一些厂商学习琢磨一些主动均衡方案,最终并未尝试。原因有二,其一:被其高昂的成本、复杂的开关矩阵电路吓怕了,更担心因其开关矩阵的庞大复杂带来的失效以及失控风险;其二,实在觉得没有必要。大电流的主动均衡并非治病救人,而是毒品,慢性毒药。

不知道国外有哪些公司研发的BMS有采用主动均衡的。至少我见过三款比较成熟的国外BMS,都是电阻方式被动均衡。在一些文档资料上,也少见国外公司大力宣扬主动均衡方案及其必要性,更多的都是国内公司以此为卖点大力宣扬,并声称自己的主动均衡技术远超国外等等。是老外做不出来吗?我也不相信。是老外担心成本吗?坚决不会,看过几款老外的BMS,最佩服的就是老外为了提高安全性而不吝成本的严谨。老外坚决不会省那么点板子的钱的,相反,老外宁愿为了提高哪怕一元钱价值可靠性而多掏出十块钱的成本。老外为什么没有用主动均衡?我估猜其原因也无非两点:必要性,安全性。我们静下心来一步步分析。

先看其安全性。主动均衡的多种方案,无论电容飞渡法,变压器、电感转移能量等等方法,基本上都是有一堆矩阵开关直接与电芯并联。开关万一失效----不是万一,而是很可能!---结果不言而喻。想想,约百个无论是半导体开关还是继电器经过无数次的开启关闭,谁敢打包票说百分之百不会坏?坏了也罢,关键是坏了之后不仅仅是导致失效,而且是致命的电芯短路危险。

必要性才是关键。为什么要均衡?均衡的目的是什么?

BMS的功能是:在安全范围许可内,以最佳方式使用电池并延长其寿命。从目前BMS功能需求出发点概括的话,就是:检测,通信,均衡,温控,保护。

为什么要均衡?不一致性。那为什么会出现不一致呢?原因如下:

电芯制造时本身材料的不一致。阴极或阳极涂布不均,切片大小,等等;

使用环境导致,如各温度点不同,各电压受到的物理压力不同等,都会导致不一致;

环境已恢复至一致,但因之前的不一致造成永久性的不可逆转不一致。

OK,电芯出现不一致了,该不一致又会有好几种现象:电芯都是好的,荷电能力都一样,因各自漏电不同导致电压不一样;荷电能力不一致,有的容量变小了;以及荷电能力一样,但对应的电压、容量曲线已经偏移了。目前我们的均衡都是电压均衡,无法去检测每一串电芯的荷电。也就是说,我们的均衡能改善的,也只是第一种情况。对后两种情况根本无从下手。

 那么,对第一种情况的严重性到底有多大?

 目前市面上的各种FAE芯片,用量最多的可能就是耳熟能详6803/6804系列了。当组模组、 pack的时候,电芯因FAE消耗电流不同或电芯自放电不同或外部连接造成的微短路导致的电芯差异其实是非常小的。

有资料说锂电池自放电大约是每月1%。用倍率折算一下,为大约0.01C的 30X24分之一C,即大约1.4X10-5C;即使有更大的,也应不会太离谱。当然,其容量或电压的损耗随时间可能不是呈线性的;

FAE电压端消耗电流差异:大约1uA级别(具体记不清了);

外部漏电流:绝缘部分漏电流,几乎忽略不计。

以上三个不同级别的漏电流造成的电池不平衡因素,加起来,取最大差异来估算,造成的不平衡因素也是非常小的。我曾有一次拿了个放置了一年多的电池包(20安时,原满电状态。该BMS电压采样为运放分立元件方案,比集成FAE消耗导致的不一致要大),以1C放电,仍放出了50几分钟。且电压差异不离谱。因此,要说电芯的不均衡是由各电芯消耗、损耗不同导致的主要原因,应是不可能的。可以估算,即使是使用了好几个月的电池包,该容量差异也绝对在1个安时之内,这样的话,靠几十毫安的被动均衡多浮充几个来回,完全可以解决的。

主要的不均衡因素是后两种:温度、机械应力、震动等因素导致的荷电能力出现离散型偏差,以及电压、容量曲线变异,又分可恢复不可恢复两种。

对于荷电能力偏差的电芯能怎样呢? 比如一套原来200安时的电池系统,因为什么原因有一串变成160了,如果说用主动均衡来补充,均衡电流比较大的话,似乎能将之荷电能力抬高。可是别忘了,一般均衡都是在充电时才其作用的,系统放电的时候并不会“杀富济贫”,整套系统能放出的电仍未能被提升。如果放电时也能均衡的话,似乎有用一点,不过那也得均衡电流足够大,与系统放电电流需在同一数量级才行。这样的主动均衡能力,要想很可靠的设计出来实在不是件简单事。

对于电压、容量曲线变异的电芯(这种情况我遇到过:某个电池包,整体容量没有变,但在恒流放电过程中其中某节的电压与其他相差非常大。但在放电差不多结束时,电压又似乎比较趋向于一致),此类电芯我们可以看做DNA已经变异,属于转基因产品。对这类电芯,已经不适于组pack了。只适合做充电宝用。如能采用容量均衡方式替代电压均衡,倒也可以试试。可惜,臣妾做不到哇。

对于以上二类已经可称之为损坏的电芯,做主动均衡已经没有意义了。我们的均衡作用是修复电压离散的偏差因素,而不是补充能量!因此,我们的主要任务是挑选一致性好的电芯,并以最好方案来设计系统,而不是拼命做出大电流的主动均衡来给其中“异类”电芯杀富济贫!均衡只是治病,感冒咳嗽之类尚可,但绝对不应该去尝试已经无可救药的晚期疑难杂症。

因此,我的观点就是,首先设计PACK时,pack方案评估充分做好,热管理时温度一致性做好,电芯筛选好,匹配上小电流被动均衡足够了。被动均衡必须留着,因为这是修复极小的电芯不均衡的唯一通道。我就不信了,那么一点小差异,我每次充电都给他浮充个几小时还治不了它了!真正治不了的且不可逆的,说明PACK设计不够。此时应从PACK入手,而不是拼命加大均衡电流!

想起个笑话,有人去看病,说医生我吃肉卡骨头了,给我治喉咙吧。医生说你眼睛有问题,我给你开眼药水才是关键。貌似笑话,实为至理也。正如均衡,不想着从前端去如何消除导致不均衡因素,而只想靠均衡解决一切问题,诚可笑也。

想起大约两年前认识个公司,向我们推荐他的均衡方案:主动均衡,绝对的大电流主动均衡,承诺:即使有的电芯容量只剩50%,用上他们的均衡方案,也能让整套系统放出超过90%的容量!他们的能量转移储能媒介是什么呢?不是电容电感或变压器,而是一个电池!就是我们组系统用的电池!我有些无语。这不是在修复电芯的离散性了,而是,怎么说呢?直接就补充能量了,是吗?我担心的,更重要的一点:大电流的主动均衡非但不能起到一点点修复电芯的作用,而且更加速了变异电芯的迅速老化过程!使其恶性循环,表面看起来短期内似乎得到提升,其实不过饮鸩止渴,死的更快而已。

     还是那句话:均衡的目的是治病,或调理,针对小病而已;如是癌症、艾滋什么的,请直接送火葬场。正如一个团队,大伙儿步伐、方向、速度一致的话,是最好的情况;如果其中有人偏偏拖拖拉拉,工作效率慢,来的比别人晚,走得比别人早,还无可救药不悔改。此时,此时不应该让大伙每人来搭把手让他跟上,天天给他打鸡血,让他吃伟哥,那样只会让他加速精尽人亡的过程;此时该做的是直接替换。
 
来源:网络 查看全部
常听到国内不少BMS公司大力宣扬自研发的BMS主动均衡大电流,高效率等等,并以此为亮点大力加以推广之。余亦尝因己不思上进从未曾涉足而惴惴不安。

做过几个BMS, 无一例外都是采用国内最传统最简单的被动均衡放电方式。也喜欢接触一些厂商学习琢磨一些主动均衡方案,最终并未尝试。原因有二,其一:被其高昂的成本、复杂的开关矩阵电路吓怕了,更担心因其开关矩阵的庞大复杂带来的失效以及失控风险;其二,实在觉得没有必要。大电流的主动均衡并非治病救人,而是毒品,慢性毒药。

不知道国外有哪些公司研发的BMS有采用主动均衡的。至少我见过三款比较成熟的国外BMS,都是电阻方式被动均衡。在一些文档资料上,也少见国外公司大力宣扬主动均衡方案及其必要性,更多的都是国内公司以此为卖点大力宣扬,并声称自己的主动均衡技术远超国外等等。是老外做不出来吗?我也不相信。是老外担心成本吗?坚决不会,看过几款老外的BMS,最佩服的就是老外为了提高安全性而不吝成本的严谨。老外坚决不会省那么点板子的钱的,相反,老外宁愿为了提高哪怕一元钱价值可靠性而多掏出十块钱的成本。老外为什么没有用主动均衡?我估猜其原因也无非两点:必要性,安全性。我们静下心来一步步分析。

先看其安全性。主动均衡的多种方案,无论电容飞渡法,变压器、电感转移能量等等方法,基本上都是有一堆矩阵开关直接与电芯并联。开关万一失效----不是万一,而是很可能!---结果不言而喻。想想,约百个无论是半导体开关还是继电器经过无数次的开启关闭,谁敢打包票说百分之百不会坏?坏了也罢,关键是坏了之后不仅仅是导致失效,而且是致命的电芯短路危险。

必要性才是关键。为什么要均衡?均衡的目的是什么?

BMS的功能是:在安全范围许可内,以最佳方式使用电池并延长其寿命。从目前BMS功能需求出发点概括的话,就是:检测,通信,均衡,温控,保护。

为什么要均衡?不一致性。那为什么会出现不一致呢?原因如下:

电芯制造时本身材料的不一致。阴极或阳极涂布不均,切片大小,等等;

使用环境导致,如各温度点不同,各电压受到的物理压力不同等,都会导致不一致;

环境已恢复至一致,但因之前的不一致造成永久性的不可逆转不一致。

OK,电芯出现不一致了,该不一致又会有好几种现象:电芯都是好的,荷电能力都一样,因各自漏电不同导致电压不一样;荷电能力不一致,有的容量变小了;以及荷电能力一样,但对应的电压、容量曲线已经偏移了。目前我们的均衡都是电压均衡,无法去检测每一串电芯的荷电。也就是说,我们的均衡能改善的,也只是第一种情况。对后两种情况根本无从下手。

 那么,对第一种情况的严重性到底有多大?

 目前市面上的各种FAE芯片,用量最多的可能就是耳熟能详6803/6804系列了。当组模组、 pack的时候,电芯因FAE消耗电流不同或电芯自放电不同或外部连接造成的微短路导致的电芯差异其实是非常小的。

有资料说锂电池自放电大约是每月1%。用倍率折算一下,为大约0.01C的 30X24分之一C,即大约1.4X10-5C;即使有更大的,也应不会太离谱。当然,其容量或电压的损耗随时间可能不是呈线性的;

FAE电压端消耗电流差异:大约1uA级别(具体记不清了);

外部漏电流:绝缘部分漏电流,几乎忽略不计。

以上三个不同级别的漏电流造成的电池不平衡因素,加起来,取最大差异来估算,造成的不平衡因素也是非常小的。我曾有一次拿了个放置了一年多的电池包(20安时,原满电状态。该BMS电压采样为运放分立元件方案,比集成FAE消耗导致的不一致要大),以1C放电,仍放出了50几分钟。且电压差异不离谱。因此,要说电芯的不均衡是由各电芯消耗、损耗不同导致的主要原因,应是不可能的。可以估算,即使是使用了好几个月的电池包,该容量差异也绝对在1个安时之内,这样的话,靠几十毫安的被动均衡多浮充几个来回,完全可以解决的。

主要的不均衡因素是后两种:温度、机械应力、震动等因素导致的荷电能力出现离散型偏差,以及电压、容量曲线变异,又分可恢复不可恢复两种。

对于荷电能力偏差的电芯能怎样呢? 比如一套原来200安时的电池系统,因为什么原因有一串变成160了,如果说用主动均衡来补充,均衡电流比较大的话,似乎能将之荷电能力抬高。可是别忘了,一般均衡都是在充电时才其作用的,系统放电的时候并不会“杀富济贫”,整套系统能放出的电仍未能被提升。如果放电时也能均衡的话,似乎有用一点,不过那也得均衡电流足够大,与系统放电电流需在同一数量级才行。这样的主动均衡能力,要想很可靠的设计出来实在不是件简单事。

对于电压、容量曲线变异的电芯(这种情况我遇到过:某个电池包,整体容量没有变,但在恒流放电过程中其中某节的电压与其他相差非常大。但在放电差不多结束时,电压又似乎比较趋向于一致),此类电芯我们可以看做DNA已经变异,属于转基因产品。对这类电芯,已经不适于组pack了。只适合做充电宝用。如能采用容量均衡方式替代电压均衡,倒也可以试试。可惜,臣妾做不到哇。

对于以上二类已经可称之为损坏的电芯,做主动均衡已经没有意义了。我们的均衡作用是修复电压离散的偏差因素,而不是补充能量!因此,我们的主要任务是挑选一致性好的电芯,并以最好方案来设计系统,而不是拼命做出大电流的主动均衡来给其中“异类”电芯杀富济贫!均衡只是治病,感冒咳嗽之类尚可,但绝对不应该去尝试已经无可救药的晚期疑难杂症。

因此,我的观点就是,首先设计PACK时,pack方案评估充分做好,热管理时温度一致性做好,电芯筛选好,匹配上小电流被动均衡足够了。被动均衡必须留着,因为这是修复极小的电芯不均衡的唯一通道。我就不信了,那么一点小差异,我每次充电都给他浮充个几小时还治不了它了!真正治不了的且不可逆的,说明PACK设计不够。此时应从PACK入手,而不是拼命加大均衡电流!

想起个笑话,有人去看病,说医生我吃肉卡骨头了,给我治喉咙吧。医生说你眼睛有问题,我给你开眼药水才是关键。貌似笑话,实为至理也。正如均衡,不想着从前端去如何消除导致不均衡因素,而只想靠均衡解决一切问题,诚可笑也。

想起大约两年前认识个公司,向我们推荐他的均衡方案:主动均衡,绝对的大电流主动均衡,承诺:即使有的电芯容量只剩50%,用上他们的均衡方案,也能让整套系统放出超过90%的容量!他们的能量转移储能媒介是什么呢?不是电容电感或变压器,而是一个电池!就是我们组系统用的电池!我有些无语。这不是在修复电芯的离散性了,而是,怎么说呢?直接就补充能量了,是吗?我担心的,更重要的一点:大电流的主动均衡非但不能起到一点点修复电芯的作用,而且更加速了变异电芯的迅速老化过程!使其恶性循环,表面看起来短期内似乎得到提升,其实不过饮鸩止渴,死的更快而已。

     还是那句话:均衡的目的是治病,或调理,针对小病而已;如是癌症、艾滋什么的,请直接送火葬场。正如一个团队,大伙儿步伐、方向、速度一致的话,是最好的情况;如果其中有人偏偏拖拖拉拉,工作效率慢,来的比别人晚,走得比别人早,还无可救药不悔改。此时,此时不应该让大伙每人来搭把手让他跟上,天天给他打鸡血,让他吃伟哥,那样只会让他加速精尽人亡的过程;此时该做的是直接替换。
 
来源:网络
1967 浏览

BMS需求超百亿,你必须了解的核心技术和市场潜力!

机械自动化类 功夫熊猫 2016-07-15 13:12 发表了文章 来自相关话题

[摘要] BMS的市场增量主要来自两方面,对汽车用BMS的需求在很长一段时间将是增量市场,再就是以往以铅酸电池为动力的低速电动车市场。
最近有投资机构在向本人询问BMS投资这块的问题,处于风口上的BMS专业厂家科列技术更是在新三板的估值超过30亿元,资本市场对其关注度只增不减。在此本人查阅了一些资料,以及对市场的预测,对BMS的重要性以及相关技术做了一些阐述,还请这块的大牛们多多拍砖。BMS作为电动汽车的一个核心部件之一,整个新能源电动汽车产业的蓬勃发展给这块的投资带来了机遇,同时也充满了风险和挑战。BMS的重要性

电池管理系统(BATTERY MANAGEMENT SYSTEM)简称BMS,主要功能就是为了能够提高电池的利用率,防止电池出现过度充电和过度放电,延长电池的使用寿命,监控电池的状态。对于电动汽车来说,BMS系统肩负着很重要的责任,是电池的核心管家。特别是近几年电动汽车推广的过程中出现的锂电池起火燃烧安全事故,更是把电池管理的安全性提高到前所未有的高度,甚至把电动汽车这个行业推到了风口浪尖。电动汽车电池在使用过程中最大化的发挥经济效益以及安全的保障车辆的运行,BMS系统起到了关键的作用。

在电动汽车整车中,BMS所占有的成本不是很高。主要有这么几个作用,估测电池的荷电状态,检测电池的使用状态,管控电池的循环寿命。在充电过程中对电池的热管理,启停锂电池的冷却系统,同时也管理单体电池之间的均衡,防止单体电池过充过放产生危险。再就是监测整个电池的健康工作状态。

锂电池的与BMS

要彻底了解BMS的工作原理和其重要性,还要从BMS管控的锂电池说起。锂电池主要是指以锂离子嵌入化合物为正负极材料的一类电池。一般常见的正极材料有钴酸锂、锰酸锂、磷酸铁锂、镍钴铝酸锂(三元锂)、钛酸锂等材料,每种材料的特性也都不一样。负极材料一般是石墨,目前也在研究石墨烯材料应用于锂电池的负极材料中,电解液用的比较多的是六氟磷酸锂。锂电池的充放电可以用下图来表示。由于电解质为有机溶剂,属于非导电体,在工作的过程中不会出现像铅酸电池那样的电解液导电现象,所以能够承受大电流充电,实现快充功能。

当然不同的正极材料和负极材料以及电解液做出的锂电池所表现出的电池特性是不一样的,例如三元锂电池和磷酸铁锂电池的外在开路电压,内阻值,放电倍率以及环境温度适应能力都是不一样的,对于BMS来说SOC的估测更是没有一套放之任何锂电池而皆准的标准算法。从锂电池的内部说起,看看BMS对于锂电池的重要性。


铅酸电池出现过充的时候会出现电解水的反应,那么问题来了,如果锂电池出现过充或者是过放电将会产生什么现象呢?当充满电之后,锂离子大部分会嵌套在石墨上面,当石墨中所嵌入的锂的含量超过了它所承受的范围,那么多余的锂离子就会和负极中穿梭而来的电子结合,在负极表面上开始沉积,形成锂枝晶体。而且锂枝晶主要沉积在隔膜和负极的接触部位,生长的方向是沿着从负极→隔膜的走向,而这个方向很容易刺穿电池隔膜,一起电池内部短路,小则影响电池放电效率循环寿命,大则会危害电池的安全,造成起火等安全隐患。BMS就需要在任何情况下保障电池不能过充,及时准确判断电池的电荷状态,当充电器或者是充电桩对电动汽车充电到一定程度,即电池的电量达到一定范围上线电则立即断电保护电池。

当电动汽车充满电进行工作,理论上能将电池中存有的电量彻底释放完毕,达到电动汽车的最大续航里程。但是出现这样的情况对电池显然是不利的特别是使电池的循环使用寿命大大缩短。释放电量究竟要释放到剩余电量到多少就停止,这就是BMS的另一个功能,准确估测电池的荷电状态 (State of Charge,即SOC),即电池剩余电量,保证SOC维持在合理的范围内。

在经典的电工学里面,电池的模型实际上就是一个理想电压源和一个电阻的串联,这个串联电阻也就是电池内阻。锂电池在生产的过程中,要求这个内阻越小越好,然而,内阻目前只能更进一步减小而不能从根本上消除内阻,而且这个内阻对于每个电池单体来说很难做到一致,只能在一定的范围之内。再加上生产工艺的控制,等因素的影响,每个单体电池的性能会存在一定的细微差异。电池只要是存在使用就会造成内阻对系统的影响,如充满电时候所表现出来的开路电压的细微差异。这就要求BMS对每个单提电池的细微管理,尤其是管理算法就显得更为重要。在电动汽车动力电池大电流充放电的情况下(快充、电机过载),内阻的存在会造成电池的过热,如果BMS没有及时有效的进行管控或者是出现失效状态(软件失效或者使硬件失效),不管是对电池还是对整车将是致命性的危险,甚至引起车体燃烧。

不同的电池参数和不同的电池材料所形成的单体电压时不一样的,BMS的进行电池管理的时候必须要有针对性,进行相互匹配。内在的控制算法更是发挥电池最大价值的核心所在。在整个使用过程中最基础的是电动汽车的安全性,能够保证BMS 在任何环境下都能够稳定可靠的工作软件的有效性和硬件的有效性,等等这些性能都是目前BMS专业企业所要做的工作。

BMS的工作原理与技术核心

对于BMS的技术,目前各大芯片厂家都推出了自己的解决方案,以及针对性的底层芯片,供厂家进行二次开发。常用的主流方案以及芯片有这么几个大的厂商,TI(德州仪器)、ST(意法半导体)、ADI(亚德诺)、ATMEL(艾特梅尔)、Infinen(英飞凌)、Intersil(英特矽尔)、Linear(凌力尔特)、Maxim(美信)等厂家。国内的BMS企业都是在此基础上进行二次开发,包括硬件设计,软件的搭建等。在很多年前这些厂家都已经进行过方案的验证和仿真。

在对电池的管理目前有主动式均衡管理和被动式均衡管理。两种管理模式各有优缺点,所采用的方式普遍为采集单体电池电压,串联电流,以及温度以及电池组的电压,然后将这些信号传给运算模块进行处理发出指令,最后将整个处理的信息指令通过CAN通讯系统传送给汽车中央控制单元或整车VMS系统。其组成主要由数据采集电路、电子控制单元(ECU)和通讯电路组成。总体分为硬件部分和软件部分,在硬件部分主要是在设计的时候考虑到硬件寿命使用冗余量等等硬件设计,保证整个BMS模块在使用的时候不会出现硬件的故障。在软件方面其最核心的技术在原SOC的估测算法,电动汽车动力电池的电荷状态估测是BMS控制算法的核心所在,直接影响到电动汽车的使用寿命和运行稳定性状态。

电动汽车使用的环境比较复杂,使用工况的不一样,电池的放电倍率的不一样都会影响到BMS对电池SOC的估测判断,再就是随着电池的循环使用,电池自然寿命的减少造成SOC的自然减少也会更进一步影响到BMS的判断。BMS对动力电池SOC的估算精度特别的重要。精度越高,对于相同容量的电池,可以有更高的续航里程。所以,高精度的SOC估算可以有效地降低所需要的电池成本。而高精度的算法更是国内广大BMS专业厂家要去下功夫解决的问题。例如汽车持续的上坡,持续大电流放电,此时因为电池内部锂离子的扩散需要时间,造成单体电池电压快速降低,而对于SOC的估算更是一个不容易解决的问题。

对于BMS的控制保护机制所占用的控制单元CPU的资源并不是很多,但这并是说保护机制就不重要,保护机制的控制稍微比较简单,毕竟没有涉及到复杂的算法。而在核心方面SOC的估测,每一种状态和工况所需要的算法都不一样,比如下坡的能量回收,上坡时候的持续大电流放电,平坦路面的的持续行驶,糟糕路况的持续行驶,以及频繁的起步刹车路况。如果整个过程只采用以往的单体电池电压检测和电流时间积分来进行判断将会出现很大的估测误差。显然针对不同的工况需要建立不同的物理模型进行计算,甚至会涉及到数学物理方法里面的各种边界条件计算,这也不是简单的CUP能完成的任务。

总之对于一个好的BMS系统企业来说至少要达到这些条件掌握电池SOC核心算法;掌握健康状态SOH估算;掌握高效的均衡管理技术,先进的散热机制;掌握业内领先的高精度测量技术;可选配多功能数据记录仪等附加功能。在安全的性能方面要满足:电池安全管理多级故障诊断保护;高压安全管理;电池电压采集模块具备回路过流、短路保护等安全机制,电路更可靠;在通讯系统传输过程中满足EMC要求EMI要求,保证数据传输不会受到干扰而出现错误指令。在充电接口上符合标准规范:支持充电国标GBT 20234-2015及GBT 27930-2015;支持各种协议和故障诊断协议,能够在线对协议进行修改。

电动汽车的发展使我国的BMS技术与国外的BMS技术存在的差距并不是很大,国内依然有表现不俗的专业厂家。在目前来看国内BMS厂家比较多自身技术水平也参差不齐,这得益于电动汽车市场属于一个增量市场,处于飞速上升阶段。未来的情形一定使掌握有核心技术的厂家将引领市场的发展和规范。

BMS的市场潜力

从下游整车厂的反映来看,BMS市场由动力电池企业、PACK企业及BMS企业来把控。整车厂更愿意以签订技术协议的方式整体采购电池组+BMS。究其原因,整车厂不愿意花精力去做BMS主要是基于这么几点:1、BMS占整车成本较小,涉足该领域不合算;2、电池组分开采购,BMS作为电池安全管理系统,一旦出现问题,就会出现“扯不清”的情况;3、BMS与电池须高度匹配,电池材料、电压、温度等不同,BMS方案就会不同。在不了解电池的情况下,整车厂去做BMS没有任何优势。

由于市场上电池的型号,材料等等存在多样性,BMS的匹配更是需要进行专业的匹配。对于电池厂家来讲,除非电池的出货量足够大,才有会考虑自己去做BMS,然而随着锂电池厂家产品线的丰富和产品的多样化策略,电池厂家的BMS业务依然会放下归专业的公司来做。从近几年的释放份额的分布上来看就能反映出来。

目前BMS的提供商主要集中在专业BMS厂家如科列技术、亿能电子、妙益电子、冠拓等专业厂家,毕竟专业的事还需要专业的厂家来做。就整个市场来看,专业BMS厂家的市场份额会超过60%,其余的则是PACK厂家、锂电池厂家以及整车厂家占有。随着电动汽车的出货量不断地增长,BMS专业企业也将迎来随着电动汽车一起爆发式的增长。随着电动汽车的保有量不断地增加以及存量的时间拉长,BMS存在的一些潜在问题和风险将会逐步显露出来,一些没有核心技术和核心算法的公司将会逐渐淘汰出局。要做好关乎汽车安全的BMS的技术比壁垒还是有一定的高度。

BMS的市场增量主要来自两个方面,其一是随着电动汽车的飞速发展,特别是产销量的持续增长,对汽车用BMS的需求将在很长一段时间将是一个增量市场。再就是以往以铅酸电池为动力电池的低速电动车市场,这块随着国家政策的逐渐清晰,锂电化必然是趋势,这块的市场需求更是巨量的。再加上其他锂电替换铅酸的领域,未来整个BMS市场乐观估计会超过每年100亿元的需求量。
文章来源:网络
  查看全部
[摘要] BMS的市场增量主要来自两方面,对汽车用BMS的需求在很长一段时间将是增量市场,再就是以往以铅酸电池为动力的低速电动车市场。
最近有投资机构在向本人询问BMS投资这块的问题,处于风口上的BMS专业厂家科列技术更是在新三板的估值超过30亿元,资本市场对其关注度只增不减。在此本人查阅了一些资料,以及对市场的预测,对BMS的重要性以及相关技术做了一些阐述,还请这块的大牛们多多拍砖。BMS作为电动汽车的一个核心部件之一,整个新能源电动汽车产业的蓬勃发展给这块的投资带来了机遇,同时也充满了风险和挑战。BMS的重要性

电池管理系统(BATTERY MANAGEMENT SYSTEM)简称BMS,主要功能就是为了能够提高电池的利用率,防止电池出现过度充电和过度放电,延长电池的使用寿命,监控电池的状态。对于电动汽车来说,BMS系统肩负着很重要的责任,是电池的核心管家。特别是近几年电动汽车推广的过程中出现的锂电池起火燃烧安全事故,更是把电池管理的安全性提高到前所未有的高度,甚至把电动汽车这个行业推到了风口浪尖。电动汽车电池在使用过程中最大化的发挥经济效益以及安全的保障车辆的运行,BMS系统起到了关键的作用。

在电动汽车整车中,BMS所占有的成本不是很高。主要有这么几个作用,估测电池的荷电状态,检测电池的使用状态,管控电池的循环寿命。在充电过程中对电池的热管理,启停锂电池的冷却系统,同时也管理单体电池之间的均衡,防止单体电池过充过放产生危险。再就是监测整个电池的健康工作状态。

锂电池的与BMS

要彻底了解BMS的工作原理和其重要性,还要从BMS管控的锂电池说起。锂电池主要是指以锂离子嵌入化合物为正负极材料的一类电池。一般常见的正极材料有钴酸锂、锰酸锂、磷酸铁锂、镍钴铝酸锂(三元锂)、钛酸锂等材料,每种材料的特性也都不一样。负极材料一般是石墨,目前也在研究石墨烯材料应用于锂电池的负极材料中,电解液用的比较多的是六氟磷酸锂。锂电池的充放电可以用下图来表示。由于电解质为有机溶剂,属于非导电体,在工作的过程中不会出现像铅酸电池那样的电解液导电现象,所以能够承受大电流充电,实现快充功能。

当然不同的正极材料和负极材料以及电解液做出的锂电池所表现出的电池特性是不一样的,例如三元锂电池和磷酸铁锂电池的外在开路电压,内阻值,放电倍率以及环境温度适应能力都是不一样的,对于BMS来说SOC的估测更是没有一套放之任何锂电池而皆准的标准算法。从锂电池的内部说起,看看BMS对于锂电池的重要性。


铅酸电池出现过充的时候会出现电解水的反应,那么问题来了,如果锂电池出现过充或者是过放电将会产生什么现象呢?当充满电之后,锂离子大部分会嵌套在石墨上面,当石墨中所嵌入的锂的含量超过了它所承受的范围,那么多余的锂离子就会和负极中穿梭而来的电子结合,在负极表面上开始沉积,形成锂枝晶体。而且锂枝晶主要沉积在隔膜和负极的接触部位,生长的方向是沿着从负极→隔膜的走向,而这个方向很容易刺穿电池隔膜,一起电池内部短路,小则影响电池放电效率循环寿命,大则会危害电池的安全,造成起火等安全隐患。BMS就需要在任何情况下保障电池不能过充,及时准确判断电池的电荷状态,当充电器或者是充电桩对电动汽车充电到一定程度,即电池的电量达到一定范围上线电则立即断电保护电池。

当电动汽车充满电进行工作,理论上能将电池中存有的电量彻底释放完毕,达到电动汽车的最大续航里程。但是出现这样的情况对电池显然是不利的特别是使电池的循环使用寿命大大缩短。释放电量究竟要释放到剩余电量到多少就停止,这就是BMS的另一个功能,准确估测电池的荷电状态 (State of Charge,即SOC),即电池剩余电量,保证SOC维持在合理的范围内。

在经典的电工学里面,电池的模型实际上就是一个理想电压源和一个电阻的串联,这个串联电阻也就是电池内阻。锂电池在生产的过程中,要求这个内阻越小越好,然而,内阻目前只能更进一步减小而不能从根本上消除内阻,而且这个内阻对于每个电池单体来说很难做到一致,只能在一定的范围之内。再加上生产工艺的控制,等因素的影响,每个单体电池的性能会存在一定的细微差异。电池只要是存在使用就会造成内阻对系统的影响,如充满电时候所表现出来的开路电压的细微差异。这就要求BMS对每个单提电池的细微管理,尤其是管理算法就显得更为重要。在电动汽车动力电池大电流充放电的情况下(快充、电机过载),内阻的存在会造成电池的过热,如果BMS没有及时有效的进行管控或者是出现失效状态(软件失效或者使硬件失效),不管是对电池还是对整车将是致命性的危险,甚至引起车体燃烧。

不同的电池参数和不同的电池材料所形成的单体电压时不一样的,BMS的进行电池管理的时候必须要有针对性,进行相互匹配。内在的控制算法更是发挥电池最大价值的核心所在。在整个使用过程中最基础的是电动汽车的安全性,能够保证BMS 在任何环境下都能够稳定可靠的工作软件的有效性和硬件的有效性,等等这些性能都是目前BMS专业企业所要做的工作。

BMS的工作原理与技术核心

对于BMS的技术,目前各大芯片厂家都推出了自己的解决方案,以及针对性的底层芯片,供厂家进行二次开发。常用的主流方案以及芯片有这么几个大的厂商,TI(德州仪器)、ST(意法半导体)、ADI(亚德诺)、ATMEL(艾特梅尔)、Infinen(英飞凌)、Intersil(英特矽尔)、Linear(凌力尔特)、Maxim(美信)等厂家。国内的BMS企业都是在此基础上进行二次开发,包括硬件设计,软件的搭建等。在很多年前这些厂家都已经进行过方案的验证和仿真。

在对电池的管理目前有主动式均衡管理和被动式均衡管理。两种管理模式各有优缺点,所采用的方式普遍为采集单体电池电压,串联电流,以及温度以及电池组的电压,然后将这些信号传给运算模块进行处理发出指令,最后将整个处理的信息指令通过CAN通讯系统传送给汽车中央控制单元或整车VMS系统。其组成主要由数据采集电路、电子控制单元(ECU)和通讯电路组成。总体分为硬件部分和软件部分,在硬件部分主要是在设计的时候考虑到硬件寿命使用冗余量等等硬件设计,保证整个BMS模块在使用的时候不会出现硬件的故障。在软件方面其最核心的技术在原SOC的估测算法,电动汽车动力电池的电荷状态估测是BMS控制算法的核心所在,直接影响到电动汽车的使用寿命和运行稳定性状态。

电动汽车使用的环境比较复杂,使用工况的不一样,电池的放电倍率的不一样都会影响到BMS对电池SOC的估测判断,再就是随着电池的循环使用,电池自然寿命的减少造成SOC的自然减少也会更进一步影响到BMS的判断。BMS对动力电池SOC的估算精度特别的重要。精度越高,对于相同容量的电池,可以有更高的续航里程。所以,高精度的SOC估算可以有效地降低所需要的电池成本。而高精度的算法更是国内广大BMS专业厂家要去下功夫解决的问题。例如汽车持续的上坡,持续大电流放电,此时因为电池内部锂离子的扩散需要时间,造成单体电池电压快速降低,而对于SOC的估算更是一个不容易解决的问题。

对于BMS的控制保护机制所占用的控制单元CPU的资源并不是很多,但这并是说保护机制就不重要,保护机制的控制稍微比较简单,毕竟没有涉及到复杂的算法。而在核心方面SOC的估测,每一种状态和工况所需要的算法都不一样,比如下坡的能量回收,上坡时候的持续大电流放电,平坦路面的的持续行驶,糟糕路况的持续行驶,以及频繁的起步刹车路况。如果整个过程只采用以往的单体电池电压检测和电流时间积分来进行判断将会出现很大的估测误差。显然针对不同的工况需要建立不同的物理模型进行计算,甚至会涉及到数学物理方法里面的各种边界条件计算,这也不是简单的CUP能完成的任务。

总之对于一个好的BMS系统企业来说至少要达到这些条件掌握电池SOC核心算法;掌握健康状态SOH估算;掌握高效的均衡管理技术,先进的散热机制;掌握业内领先的高精度测量技术;可选配多功能数据记录仪等附加功能。在安全的性能方面要满足:电池安全管理多级故障诊断保护;高压安全管理;电池电压采集模块具备回路过流、短路保护等安全机制,电路更可靠;在通讯系统传输过程中满足EMC要求EMI要求,保证数据传输不会受到干扰而出现错误指令。在充电接口上符合标准规范:支持充电国标GBT 20234-2015及GBT 27930-2015;支持各种协议和故障诊断协议,能够在线对协议进行修改。

电动汽车的发展使我国的BMS技术与国外的BMS技术存在的差距并不是很大,国内依然有表现不俗的专业厂家。在目前来看国内BMS厂家比较多自身技术水平也参差不齐,这得益于电动汽车市场属于一个增量市场,处于飞速上升阶段。未来的情形一定使掌握有核心技术的厂家将引领市场的发展和规范。

BMS的市场潜力

从下游整车厂的反映来看,BMS市场由动力电池企业、PACK企业及BMS企业来把控。整车厂更愿意以签订技术协议的方式整体采购电池组+BMS。究其原因,整车厂不愿意花精力去做BMS主要是基于这么几点:1、BMS占整车成本较小,涉足该领域不合算;2、电池组分开采购,BMS作为电池安全管理系统,一旦出现问题,就会出现“扯不清”的情况;3、BMS与电池须高度匹配,电池材料、电压、温度等不同,BMS方案就会不同。在不了解电池的情况下,整车厂去做BMS没有任何优势。

由于市场上电池的型号,材料等等存在多样性,BMS的匹配更是需要进行专业的匹配。对于电池厂家来讲,除非电池的出货量足够大,才有会考虑自己去做BMS,然而随着锂电池厂家产品线的丰富和产品的多样化策略,电池厂家的BMS业务依然会放下归专业的公司来做。从近几年的释放份额的分布上来看就能反映出来。

目前BMS的提供商主要集中在专业BMS厂家如科列技术、亿能电子、妙益电子、冠拓等专业厂家,毕竟专业的事还需要专业的厂家来做。就整个市场来看,专业BMS厂家的市场份额会超过60%,其余的则是PACK厂家、锂电池厂家以及整车厂家占有。随着电动汽车的出货量不断地增长,BMS专业企业也将迎来随着电动汽车一起爆发式的增长。随着电动汽车的保有量不断地增加以及存量的时间拉长,BMS存在的一些潜在问题和风险将会逐步显露出来,一些没有核心技术和核心算法的公司将会逐渐淘汰出局。要做好关乎汽车安全的BMS的技术比壁垒还是有一定的高度。

BMS的市场增量主要来自两个方面,其一是随着电动汽车的飞速发展,特别是产销量的持续增长,对汽车用BMS的需求将在很长一段时间将是一个增量市场。再就是以往以铅酸电池为动力电池的低速电动车市场,这块随着国家政策的逐渐清晰,锂电化必然是趋势,这块的市场需求更是巨量的。再加上其他锂电替换铅酸的领域,未来整个BMS市场乐观估计会超过每年100亿元的需求量。
文章来源:网络